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Executive Summary  
Regulatory air pollution monitoring in India is mostly limited to urban areas. Without a dense 
network of monitors, it is difficult to capture the fine spatial variations of PM2.5, one of the major 
pollutants with severe implications for human health. Using satellite-based products to estimate 
PM2.5 can help generate high-resolution gridded spatial maps at a significantly lower cost. 
However, there are challenges and limitations in converting the satellite columnar aerosol 
optical depth (AOD) into surface PM2.5. Major limitations include the non-availability of satellite 
AOD during cloudy days and the lack of non-urban PM2.5 measurements.    

In this study, the daily mean PM2.5 was estimated and spatial maps (of 1 km spatial resolution) 
were generated using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD for the 
calendar year 2019 across select Indian regions. The study regions included the urban, peri-
urban, and rural regions of Delhi-National Capital Region (NCR), Kanpur, and Bengaluru. An 
advanced statistical model was trained using open-access data sets (satellite, regulatory 
ground-based PM2.5, reanalysis meteorology) to estimate the daily mean PM2.5. Annual and 
seasonal maps of PM2.5 were generated and a hotspot analysis was performed to identify spatial 
clusters of high PM2.5 grids within the study regions. Spatial gradients in PM2.5 were studied to 
understand the rural, peri-urban, and urban contrast in pollution levels. 

The annual mean PM2.5 values for Delhi-NCR, Kanpur, and Bengaluru ranged between 80 and 
130 µg m-3, 95 and 130 µg m-3, and 35 and 55 µg m-3, respectively. The annual mean PM2.5 in all 
the spatial grids of Delhi-NCR and Kanpur exceeded the national annual standard (40 µg m-3). 
Seasonally, monsoon months recorded the lowest PM2.5 and winter months the highest PM2.5 
across all the study regions. PM2.5 hotspots were identified on annual and seasonal scales. Not 
surprisingly, most of the hotspots were clustered within the urban regions of Delhi, Kanpur, and 
Bengaluru.  

Most of the Delhi-National Capital Territory and its surrounding areas were identified as 
hotspot regions. Similarly, most of the urban zones in Kanpur were identified as hotspots. In 
Bengaluru, hotspots were observed in parts of Bommanahalli, Dasarahalli, Rajarajeshwari 
Nagar, South and West zones, and the Doddaballapura Taluk (rural). Weak spatial gradients in 
the annual and seasonal mean PM2.5 were observed across all of the study regions. The annual 
mean PM2.5 in rural Delhi-NCR was observed as 101 ± 6.5 µg m-3 (mean ± standard deviation), 
which is comparable to the annual mean (109 ± 9.4 µg m-3) in urban Delhi-NCR. Even the 
uninhabited areas of Delhi-NCR recorded an annual mean of PM2.5 100 ± 6.6 µg m-3. Similarly, for 
Kanpur, the urban and rural areas recorded annual means of PM2.5 114 ± 6.4 µg m-3 and 108 ± 
4.6 µg m-3, respectively. Bengaluru too exhibited little (~2 µg m-3) rural–urban contrast.  

The study provides extensive PM2.5 statistics, which could be highly useful for policymakers, 
researchers, and citizen scientists. Major policy recommendations include establishing 
representative rural and peri-urban regulatory pollution monitoring stations and identifying 
pollution sources in non-urban areas and unorganised sectors. 
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1. Introduction 
1.1 Background 
Globally, air pollution was found to be the fourth leading risk factor for premature mortality in 
2019 (Murray et al., 2020). PM2.5, particulate matter (PM) with a size smaller than 2.5 microns 
(µm), is one of the major health-damaging air pollutants that low- and middle-income countries 
(LMICs) are battling with at the moment. PM2.5 is known to impact climate, environment, public 
health, and the economy. Detrimental health impacts (such as cardiovascular, respiratory, and 
neurodegenerative diseases) of PM2.5 are well understood and documented (Kim et al., 2015; 
Schraufnagel et al., 2019). According to the Health Effects Institute (2020), developing countries 
such as Nigeria, Bangladesh, India, and Pakistan have the highest PM2.5 exposures, and these 
exposures are increasing. In India, around one million deaths in 2019 were attributed to 
ambient PM2.5.  

Conventionally, ambient PM2.5 is quantified using instruments employing a variety of 
measurement principles. The gravimetric method is considered the gold standard for the 
measurement of PM2.5 and was designated as the Federal Reference Method (FRM) by the 
United States Environmental Protection Agency (USEPA). This method provides time-integrated 
average estimates of PM2.5 based on the weighing of aerosol samples collected on a filter paper. 
Near real-time measurements of PM2.5 can be achieved by adopting measurement techniques 
such as optical scattering, beta attenuation method, and tapered element oscillating 
microbalance (TEOM). Among these, beta attenuation monitors (BAMs) and TEOMs were 
designated as Federal Equivalent Methods (FEMs) by the USEPA for measuring the hourly mean 
PM2.5. These instruments are expensive and need expertise and infrastructure to install and 
maintain.  

Developed (and high-income) countries have established dense networks of ambient PM2.5 
monitoring stations. LMICs have spatially sparse PM2.5 measurements, mostly confined to urban 
areas. Across the globe, only 24 countries have at least three PM2.5 monitors per million 
population, while 141 countries have no regular PM2.5 monitoring programmes (Martin et al., 
2019). The non-uniform geographical distribution of measurements makes it difficult to 
accurately estimate the health impacts of PM2.5 on a global scale. Alternative low-cost methods 
to improve the spatial coverage of PM2.5 include modelling exercises, dense low-cost PM2.5 
sensor networks, and satellite-based gridded PM2.5 estimates.  

The Global Burden of Disease (GBD) estimates of air pollution disease and death burden are 
based on combined PM2.5 data from ground-based measurements, global models, and satellite 
measurements. As polar orbiting satellites provide near-daily global coverage of aerosol 
measurements, satellite-based PM2.5 estimates can significantly improve spatial coverage and 
uniformity. Reliable and high-resolution estimates of PM2.5 are highly sought after to precisely 
understand and quantify adverse health impacts. 

1.2 Literature review 
According to the literature reviewed, various statistical, artificial intelligence–based, and hybrid 
models are available to estimate PM2.5 from satellite aerosol products. Aerosol optical depth 
(AOD), a measure of column-integrated aerosol burden, is the best-suited satellite product to 
estimate PM2.5. However, a standard textbook solution is not available for estimating PM2.5 using 
AOD measurements. An analytical equation relating AOD and PM2.5 is available but with a set of 
assumptions. While AOD is an optical and unit-less column-integrated product, PM2.5 is a 
physical and surface parameter with units (µg m-3). Also, model performances vary when 
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adopted across different geographical regions. These aspects point towards the need for region-
specific models to estimate PM2.5.  

Statistical methods include developing simple to advanced models such as (i) simple two-
variable linear and non-linear regression models (e.g., Wang & Christopher, 2003; Gupta et al., 
2006); (ii) multivariate regression models (e.g., Sreekanth et al., 2017); (iii) linear mixed-effects 
(LME) models (e.g., Lee et al., 2011; Mhawish et al., 2020); (iv) land-use regression (LUR) 
models (e.g., Sanchez et al., 2018); (v) geographical weighted regression (GWR) models (e.g., 
Song et al., 2014; Guo et al., 2017); and (vi) generalised additive models (GAM; e.g., Meng et al., 
2018). Some studies developed two-stage/hybrid models for better accuracy in estimating PM2.5 
(e.g., Dey et al., 2012; Hu et al., 2014).  

Artificial intelligence–based methods include neural network (NN) and random forest (RF) 
models (e.g., Gupta & Christopher, 2009; Mhawish et al., 2020). The scaling of satellite AOD by 
the factors based on the Chemical Transport Model (CTM) is an extensively used method to 
estimate national scale–gridded PM2.5 (e.g., van Donkelaar et al., 2015; Dey et al., 2012). A recent 
study by Mandal et al. (2020) used a multistage model (based on ensemble averaging 
principles) to retrospectively assess the high-resolution daily average PM2.5 over the India 
capital Delhi. Dey et al. (2020) estimated high-resolution PM2.5 from satellite AOD using a 
dynamical scaling factor derived from Modern-Era Retrospective Analysis for Research and 
Applications Version 2 (MERRA-2) reanalysis data.  

It is also understood that the performance of the model is based on the choice of auxiliary 
parameters (predictors) in building the model. Several studies have used collocated 
meteorological and land-use parameters in improving the model performance because of the 
impact of these variables on the AOD–PM2.5 relationship. Some researchers have incorporated 
aerosol vertical distribution information from the Cloud-Aerosol Lidar and Infrared Pathfinder 
(CALIPSO) satellite in their statistical models (Li et al., 2018). In addition to the conventional 
auxiliary variables, Gupta et al. (2006) studied the influence of cloud cover on the AOD–PM2.5 
relationship.  

In a global study by Christopher and Gupta (2020), spatial and seasonal AOD–PM2.5 
relationships were assessed in terms of slope, intercepts, and correlation coefficients from a 
two-variable linear regression analysis. A detailed discussion of the merits and limitations of 
PM2.5 estimated using satellite remote sensing AOD has been provided by Hoff and Christopher 
(2009) and Duncan et al. (2014) in their studies.  

1.3 Need for the study 
India is one of the rapidly developing middle-income economies in the world. Continuous 
urbanisation and industrialisation have deteriorated the air quality in the country, contributing 
a major share to the air pollution disease burden. High levels of PM2.5 is responsible for severe 
health consequences. In 2019, six Indian cities were listed in the top ten world’s most polluted 
cities1. The annual population-weighted mean ambient PM2.5 was around 90 µg m-3 for the year 
2017 (Balakrishnan et al., 2019), and the current Indian population is around 140 crores. 
Despite these alarming aspects, India’s regulatory air pollution monitoring programme has only 
500–600 operating PM2.5 stations2 (including both manual and continuous).  

 

1 www.iqair.com 

2 https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data 

http://www.iqair.com/
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Studies strongly recommend at least one PM2.5 monitor per million population (Martin et al., 
2019). As India is an LMIC and the expenditure involved in establishing and maintaining as 
many monitoring stations is high, a relatively low-cost alternative for the mapping of high-
resolution PM2.5 is needed. A recent study by Brauer et al. (2019) recommended an integrated 
(combining modelling and a variety of monitoring methods) approach for India, which includes 
a satellite-based PM2.5 estimation to generate high spatial and temporal resolution PM2.5 data. 
Satellite AOD–based PM2.5 (and PM10) estimates for the Indian region were available in the 
literature (e.g., Kumar et al., 2007; Dey et al., 2012; Chitranshi et al., 2015; Mandal et al., 2020; 
Dey et al., 2020; Mhawish et al., 2020). Most of these studies focused on Delhi and the Indo-
Gangetic Plain (IGP) regions.  

This study focuses on building an advanced but relatively less computationally complicated 
statistical model for satellite AOD–based high-resolution gridded PM2.5 estimates over select 
regions in the southern and northern parts of India. These estimates can aid effective air 
pollution mitigation and management as air pollution over urban areas is known to vary rapidly 
in space and time (Apte et al., 2017). Results from the study can help strategise the clean air 
action plans of cities within the study regions. Furthermore, the study results supports the use 
of this methodology to develop high resolution PM2.5 estimates over large areas of India to help 
the country achieve the National Clean Air Programme (NCAP) goals. NCAP aims at a 20%–30% 
reduction in PM pollution by 2024 (base year: 2017; Ganguly et al., 2020). 

1.4 Challenges  
A major challenge in the use of satellite AOD is data gaps. AOD retrieval is not possible over the 
pixels in which cloud cover is detected. In addition, satellite orbital gaps and sun glint are other 
factors contributing to the non-availability of satellite AOD. AOD data are mostly unavailable 
during the monsoon because of overcast skies. 

AOD data are available from various satellite sensors, and each AOD product is characterised by 
its unique uncertainty envelope. Hence a statistical or artificial intelligence model trained by a 
particular satellite sensor AOD may not be able to predict PM2.5 using a different satellite sensor 
AOD accurately.  

Because of the dynamic nature of the air pollution sources and emissions (especially over 
LMICs), the spatial and temporal generalisability of a model configuration is questionable. 
Exercises carried out to overcome these challenges and limitations are detailed in the later parts 
of the report. 
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2. Objectives of the Study 
In this study, we aim to spatially map the high-resolution satellite AOD–based PM2.5 estimates 
over select regions of India and quantify the estimates for air pollution management and policy 
recommendations. The specific objectives of the study are as follows: 

1. Estimate 1 km × 1 km gridded PM2.5 using satellite aerosol products 
2. Quantify small-scale (i.e., over a few kilometres) and medium-scale (urban–peri-urban 

or peri-urban–rural) spatial gradients in the estimated PM2.5 over select regions 
3. Identify PM2.5 hotspots within the study region 
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3. Study Areas and Study Period  
The study area included (see Figure 1) the urban, peri-urban, and rural regions of Delhi-NCR, 
Kanpur (Uttar Pradesh), and Bengaluru (Karnataka). Delhi, Kanpur, and Bengaluru have poor 
air quality and were also categorised as non-attainment cities (MOEFCC, 2019). 

Delhi-NCR: The national capital region (NCR) encompasses Delhi and several districts of 
adjoining states, viz. Haryana, Uttar Pradesh (UP), and Rajasthan. Delhi is the national capital 
city of India, while other major cities of the NCR include Noida, Faridabad, Ghaziabad, and 
Gurugram. Delhi is among the top 10 cities for worst air quality and was also declared India’s 
Asthma Capital3. Geographically, the NCR is a part of the Indo-Gangetic Plain (IGP), which is 
considered one of the global air pollution hotspots. Local (industrial and transportation) and 
non-local pollution sources (crop residue burning in neighbouring states), extreme weather 
patterns (cold winters responsible for a collapsed boundary layer and the frequent haze and fog 
episodes), geographical barriers (unfavourable conditions for effective horizontal dispersion of 
pollutants due to the towering Himalayas in the north), and so on aid the build-up of air 
pollution over Delhi-NCR as well as the IGP region. Air pollution over the IGP region has been 
extensively studied, characterised, and modelled by several national and international research 
groups (e.g., Mhawish et al., 2020). The NCR covers around 55,000 km2 area and has a 
population of around 46 million (2011 census) and a population density of around 840 per 
square kilometre. 

 

 
Figure 1: Delhi-NCR (first panel), Kanpur (second panel), and Bengaluru (third panel) 

 

3 https://urbanemissions.info/delhi-india/ 

https://urbanemissions.info/delhi-india/
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Kanpur: The Kanpur metropolis is divided into the urban and rural districts of Kanpur, with a 
total area of around 6,000 km2 and a population of 6.4 million (2011 census). The city of Kanpur 
(located in the Kanpur Nagar district) is the administrative capital of UP and also one of the 
largest industrial cities in the IGP. Kanpur is the 12th most populous city and the 11th most 
populous urban agglomeration in India. It is famous for leather and textile industries. More 
information on Kanpur air pollution, its monitoring status, and management can be found in 
UrbanEmissions4. 

Bengaluru: The city of Bengaluru is the administrative capital of the south Indian state of 
Karnataka. Bengaluru is the third most populous city and the fifth most populous urban 
agglomeration in India. Bengaluru is considered the silicon valley of India. It houses many 
information technology (IT) campuses and educational institutions. The metropolitan 
population is around 11 million, with an area of around 8,005 km2. More details on air pollution 
in Bengaluru can be found in Guttikunda et al. (2019).  

Study period 

The calendar year 2019 was chosen as the study period. Gridded satellite AOD–based daily 
mean PM2.5 estimation and its spatial mapping were made for the study period. Daily mean 
PM2.5 data were aggregated to monthly, seasonal, and annual scales. 

  

 

4 https://urbanemissions.info/india-apna/kanpur-india/ 

https://en.wikipedia.org/wiki/List_of_most_populous_cities_in_India
https://en.wikipedia.org/wiki/List_of_million-plus_urban_agglomerations_in_India
https://en.wikipedia.org/wiki/List_of_million-plus_urban_agglomerations_in_India
https://urbanemissions.info/india-apna/kanpur-india/
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4. Data Sets  
4.1 Satellite Aerosol Optical Depth (AOD) 
AOD data are available from several satellite sensors. AOD products from Moderate Resolution 
Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), Ozone 
Monitoring Instrument (OMI), and Visible Infrared Imaging Radiometer Suite (VIIRS) are some 
of the most popular and well-evaluated data sets in the world. In this study, we used MODIS 
AOD (at 0.55 µm), retrieved by the Multi-Angle Implementation of Atmospheric Correction 
(MAIAC) algorithm. We preferred MODIS-MAIAC-AOD because of its (i) high spatial resolution 
(1 km x 1 km), (ii) improved retrieval accuracy (compared to its predecessors), and (iii) ability 
to discriminate between fine and coarse aerosols. 

4.1.1 MODIS  
MODIS is one of the key sensors aboard the National Aeronautics and Space Administration’s 
(NASA’s) Earth Observing System (EOS) satellites: Terra and Aqua. Both satellites orbit in a sun-
synchronous, near-polar, circular orbit at an altitude of ~705 km. With its swath (cross-track) of 
~2,330 km, MODIS provides global coverage every one or two days. The first MODIS sensor 
(aboard Terra, equatorial crossing time at 10:30 a.m. LT) was launched in 1999, while the 
second MODIS sensor (aboard Aqua, equatorial crossing time at 1:30 p.m. LT) was launched in 
2002. The passive MODIS sensor measures the Earth-reflected solar radiation in 36 spectral 
bands ranging between 0.4 and 14.4 µm at varying spatial resolutions (250, 500, and 1000 m). 
Several geophysical products that can describe the features of land, ocean, and atmosphere can 
be retrieved from MODIS observations. The MODIS Aerosol Product provides spectral AOD data 
and aerosol size information5.  

4.1.2 MAIAC  
The satellite AOD retrieval algorithms usually involve (i) the estimation of surface reflectance, 
(ii) cloud screening, (iii) corrections for gas absorption and, (iv) lookup table (LUT) approach. 
Conventionally, MODIS-AOD is retrieved using Dark Target (DT) and Deep Blue (DB) algorithms 
(at a horizontal resolution of ~10 km). The DT approach (Levy et al., 2007, 2010) provides 
relatively accurate estimates of AOD over dark and/or vegetated surfaces. The DB algorithm 
(Hsu et al., 2004) is developed for and more suitable for AOD retrievals over bright surfaces 
(e.g., deserts, snow, and arid and urban areas). 

 The newer MAIAC algorithm, which combines time-series analysis and image-based processing, 
is aimed at improving the accuracy of cloud detection, aerosol retrievals, and atmospheric 
correction (Lyapustin, Wang, Laszlo, et al., 2011; Lyapustin et al., 2012, 2018). The MAIAC 
algorithm uses a physical atmosphere-surface model with minimal assumptions (Lyapustin et 
al., 2012, 2018) in contrast to the conventional swath-based Lambertian surface model, which is 
the basis for the DT algorithm. MAIAC retrieves surface Bidirectional Reflectance Distribution 
Function (BRDF; which defines how light is reflected from an opaque surface) from the collected 
multi-angle set of images—4 (at poles) to 16 (at the equator) days of observations over each 
grid. 

In addition to the BRDF retrieval, MAIAC characterises unique surface, spectral, spatial, and 
thermal signatures for each grid cell, which helps improve cloud and snow detection, aerosol 

 

5 modis.gsfc.nasa.gov 
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retrieval, and atmospheric correction (Lyapustin et al., 2018). Then a LUT (pre-computed for a 
set of aerosol models) approach is adopted for the retrieval of AOD and columnar water vapour 
(CWV). The MAIAC daily atmosphere product includes 1 km gridded (on a global sinusoidal 
projection) (i) CWV (based on MODIS near-infrared observations at 0.94 µm), (ii) AOD (at 0.47 
and 0.55 µm), (iii) cloud mask, (iv) aerosol type, and (v) smoke injection height. Combined 
MAIAC data (for both the Terra-MODIS and Aqua-MODIS satellite sensors) are available in the 
hierarchical data format (HDF4), data divided into 1200 x 1200 km2 standard MODIS tiles. 

The initial evaluation of MAIAC retrievals has shown better sensitivity to small dust storms but 
exhibited biases over bright desert regions (Lyapustin, Wang, Hsu, et al., 2011). Several key 
components of the MAIAC algorithm have been significantly improved over the years since its 
inception. Several recent validation studies across various parts of the globe have demonstrated 
better retrieval accuracies for MAIAC-AOD compared to VIIRS-AOD, DT-AOD, and DB-AOD 
(Martins et al., 2017; Superczynski et al., 2017; Jethva et al., 2019; Mhawish et al., 2019). In a 
recent comparison study over South Asia, Mhawish et al. (2019) found that MAIAC-AOD 
exhibited lower bias (compared to DB-AOD and DT-AOD) for ground truth Aerosol Robotic 
Network (AERONET) AOD measurements.  

4.2 PM2.5 

In this study, ambient PM2.5 data were acquired from the regulatory measurements being 
carried out by India’s Central and State Pollution Control Boards (CPCB/SPCB) under the 
Continuous Ambient Air Quality Monitoring Stations (CAAQMS) programme. The CAAQMS 
programme uses reference-grade instruments to measure the ‘criteria’ air pollutants. In this 
programme, a beta attenuation monitor (BAM) measures near-real-time (hourly) PM2.5. 
Technical details of the instrumentation used and measurement protocols can be found 
elsewhere6. BAM measurements are based on the Beer–Lambert law, which states that the 
amount by which the flow of beta particles is attenuated by particulate matter is exponentially 
dependent on their mass. A BAM that measures PM2.5 will be equipped with a sharp cut 2.5 µm 
cyclone (to remove larger particles from the airflow entering the measurement chamber), 
heater (to remove moisture from the ambient airflow), pump (to draw the ambient air at a 
prescribed flow rate), radioactive source (to emit beta particles), a scintillation detector (to 
measure the transmitted beta particles), and a filter tape (to collect the PM sample). 

4.3 Meteorological data 
Meteorological  variables used in the study include surface (2 m) air temperature (ST, K), 
surface (2 m) relative humidity (RH, %; derived from 2 m dew point temperature), wind fields 
(10 m; wind direction (WD, o) and wind speed (WS, m s-1); derived from separate u and v wind 
components), planetary boundary layer height (PBLH, m), and surface (2 m) pressure (SP, Pa). 
Gridded hourly data for these meteorological variables were acquired from the European 
Centre for Medium-Range Weather Forecast’s (ECMWF’s) reanalysis database. ECMWF 
combines its forecast models and data assimilation systems to produce reanalysed global data 
sets that are complete and consistent. Among several versions of reanalysis data sets, ECMWF 
Reanalysis-5 Land (ERA5-Land; data available from 1981 to present) derived meteorological 
data (except PBLH) were used. ERA5-Land is produced by replaying the land component of 

 

6 http://www.ppcb.gov.in/Attachments/Tenders/Technical.pdf 

https://en.wikipedia.org/wiki/Mass
http://www.ppcb.gov.in/Attachments/Tenders/Technical.pdf
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ERA5 climate reanalysis. The native horizontal resolution of ERA5-Land7 is around 9 km. PBLH 
data were acquired from the ERA5 product8. The horizontal grid size of ERA5 is around 30 km.  

4.4. Auxiliary data 
Auxiliary predictors used in the study include Normalized Difference Vegetation Index (NDVI) 
and Elevation (ELV, m). NDVI was considered a proxy for land use. Level-3 gridded 1 km 
MODIS-derived NDVI data were used. MODIS NDVI is produced at 16 days temporal interval at 
different horizontal resolutions. The NDVI retrieval is based on the atmosphere-corrected 
bidirectional surface reflectance. NDVI is a normalised transform of the NIR to red reflectance 
ratio, which varies between -1 and +1. Leveraging the identical MODIS sensors aboard Terra 
and Aqua satellites, the MODIS vegetation index (VI) algorithm generates each sensor’s 16-day 
composite eight days apart. This enables a higher temporal resolution of the NDVI product. 

ELV data are acquired from the global digital elevation model (DEM), ETOPO2 of the National 
Oceanic and Atmospheric Administration (NOAA). ETOPO2 is a 2 arc-minute global DEM, which 
includes both land topography and ocean bathymetry. The horizontal resolution9 of ETOPO2 is 
around 3.7 km. A summary of the predictors is tabulated below. 

 
Table 1: The list of shortlisted predictors used for model building. 

Predictor Data source Spatial 
resolution  

Temporal 
resolution 

Aerosol optical depth (AOD) MODIS satellite sensor 
(aboard Terra and Aqua) 1 km Daily 

Columnar water vapour (CWV) MODIS satellite sensor 
(aboard Terra and Aqua) 1 km  Daily 

Normalised Difference Vegetation 
Index (NDVI) 

MODIS satellite sensor 
(aboard Terra and Aqua) 1 km  8-day 

2 m temperature (ST) ERA5-Land 9 km  Hourly 

Relative humidity 
ERA5-Land (derived from 
temperature and dew point 
temperature)  

9 km  Hourly 

Wind fields (speed and direction) ERA5-Land (derived from u 
and v components) 9 km  Hourly 

Planetary boundary layer height 
(PBLH) ERA5 30 km  Hourly 

Surface pressure ERA5-Land 9 km  Hourly 
Elevation ETOPO2 3.7 km  NA 
 

 

7 https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5-land 

8 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 

9 More details on ETOPO2 can be found here: https://www.ngdc.noaa.gov/mgg/global/etopo2.html 

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5-land
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ngdc.noaa.gov/mgg/global/etopo2.html
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5. Data Handling 
5.1 AOD 
All the MODIS products were downloaded from the NASA website10. Daily files for the Terra–
Aqua MAIAC AOD product (MCD19A2) were downloaded for the study regions (respective 
tiles). Only the highest quality AOD data with the quality assurance (QA) flag ‘clear’ were 
retained for further processing. By leveraging the daily twin MODIS-AOD measurements (Terra 
and Aqua), we imputed the missing AOD values to improve their spatial coverage. On a daily 
basis, we established a linear relationship between the simultaneous Terra- and Aqua-AOD over 
the study region, and the obtained regression coefficients were used to estimate Terra-AOD 
when only Aqua-AOD was available and vice versa (Huang et al., 2018). Thresholds on the linear 
regression coefficients (slope, intercept, and R2) were imposed to achieve reliable imputations. 
Unreliable regression coefficients could be because of the small number of Terra- and Aqua-
AOD matchups on that day (because of several known reasons). The efficiency of the imputation 
method in increasing the spatial coverage of AOD is shown in Figure A1 for a typical winter day. 
Data gaps (over Karnataka) can be seen in both Terra- and Aqua-AODs because of the satellite 
orbital gap (the top row of the figure). These gaps are filled (the bottom row of Figure A1) after 
the imputation process. In this study, the imputation process was carried out separately for 
study regions in southern and northern India. After this process, grid-wise daily Terra- and 
Aqua-AODs were averaged to represent the daily mean AOD. 

5.2 PM2.5 

Hourly PM2.5 data were downloaded from the CPCB dashboard11. Hourly values were averaged 
to compute the daily mean PM2.5. Data quality check was performed on the hourly PM2.5 before 
averaging. This included (i) the removal of unrealistic PM2.5 values (instrument fill values, large 
negatives), (ii) the removal of outliers (hourly PM2.5 values outside the range of the daily mean ± 
3 × standard deviation on a log-transformed scale were flagged as outliers), (iii) the removal of 
all PM2.5 values greater than PM10 (as PM2.5 is a subset of PM10), and (iv) a 75% completeness 
criteria for daily averaging (at least 18 hours data in a day must be available to compute the 
daily mean). In Figure A2, a daily PM2.5 time series is shown before and after the data cleaning 
process. It can be observed that spurious peaks in the data are not present after processing for 
outliers and unrealistic values. 

5.3 Meteorological parameters 
Hourly mean meteorological variables were downloaded from the climate data store of the 
European Commission12.  

5.3.1 Derived variables 
ERA5-Land provides u (zonal velocity) and v (meridional velocity) components of the wind field 
separately. From these two components, WS and WD are derived using the following equations: 

𝑊𝑊𝑊𝑊 =  √𝑢𝑢2 + 𝑣𝑣2     ………….. (1) 

 

10 https://ladsweb.modaps.eosdis.nasa.gov/ 

11 https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing 

12 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview 

https://ladsweb.modaps.eosdis.nasa.gov/
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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𝑊𝑊𝑊𝑊 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑣𝑣,𝑢𝑢)     ………….. (2) 

ERA5-Land provides surface (2 m) dew point temperature (DPT), from which RH was derived 
using the equation below following Alduchov and Eskridge (1996). ST and DPT need to be 
converted into degrees Celsius (oC) before applying Equation 3. 

𝑅𝑅𝑅𝑅 = 100 ∗  
𝑒𝑒𝑒𝑒𝑒𝑒�17.625 ∗ 𝐷𝐷𝐷𝐷

243.04 + 𝐷𝐷𝐷𝐷�

𝑒𝑒𝑒𝑒𝑒𝑒�17.625 ∗ 𝑆𝑆𝑆𝑆
243.04 + 𝑆𝑆𝑆𝑆�

    …………… (3) 

5.3.2 Spatial interpolation 
Interpolation techniques were used to match up the grid size of ERA-5 meteorological 
parameters and ETOPO2 elevation data to the MODIS-MAIAC grid size. The 9 km ERA5-Land 
and 30 km ERA5 daily mean meteorological variables are spatially interpolated to the 1 km 
MAIAC grid using the bilinear interpolation method following Mhawish et al. (2020). The same 
technique was used to interpolate the 3.7 km elevation data. Figure A3 shows ST and PBLH data 
(over the Greater Bengaluru area) before and after spatial interpolation for a typical winter day. 

5.4 NDVI 
Both Terra- and Aqua-MODIS L3 NDVI products (MOD13A2 and MYD13A2) were downloaded 
for the study region and study period. Each satellite sensor provides 16-day composites. 
Combining NDVI data from both sensors, 8-day temporal resolution can be achieved. Daily NDVI 
values (over each 1 km grid) were estimated by temporally interpolating the observations. A 
cubic spline technique was used for interpolation following Mhawish et al. (2020). Figure A4 
showcases the NDVI observations and temporally interpolated values over a typical 1 km spatial 
grid for a year. 
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6. Methodology 
6.1 Model selection 
Being a developing country, the PM2.5 load in India and its sources can be highly variable in time 
and space. These, in turn, can be responsible for the spatial and temporal heterogeneity in the 
aerosol optical and microphysical properties and their vertical distribution. These aspects 
suggest a model that can calibrate AOD (to estimate PM2.5) at a high resolution both spatially 
and temporally. An LME model is one such statistical approach that can accommodate fixed and 
random effects. The LME model is highly suitable for grouped data and also when groups have 
an unequal number of observations. The LME model has proven to be effective (cross-validation 
[CV] R2 greater than 0.8) in estimating satellite AOD–based PM2.5 over low (e.g., New England 
region) and highly polluted (e.g., Beijing) environments (Lee et al., 2011; Xie et al., 2015; Han et 
al., 2018; Mhawish et al., 2020). Based on the daily grouping of 10 km satellite AOD and ground 
PM2.5, Lee et al. (2011) observed the CV R2 greater than 0.92 over the New England region. In a 
sensitivity exercise, Xie et al. (2015) demonstrated that the use of finer-resolution AOD in the 
LME model can yield better model performance. Over Beijing, Han et al. (2018) observed a 
superior LME model performance (CV R2 greater than 0.92) in predicting PM2.5 from 1 km 
MAIAC-AOD. Mhawish et al. (2020) configured their LME model with day-specific and month-
specific random effects in the AOD–PM2.5 relationship and also added meteorological 
parameters (as fixed effects) to predict PM2.5 over the IGP. Based on the understanding obtained 
from these studies, the configuration of the LME model that was adopted in the current study is 
as follows: 

𝑃𝑃𝑃𝑃2.5 𝑖𝑖,𝑗𝑗 = (𝛼𝛼𝑜𝑜 + 𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑) + �𝛽𝛽𝑜𝑜 + 𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑� × 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗 + 𝛽𝛽1 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 +  𝛽𝛽2 × 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 + 𝛽𝛽3 × 𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 +
𝛽𝛽4 × 𝑊𝑊𝑊𝑊𝑖𝑖,𝑗𝑗 + 𝛽𝛽5 × 𝑊𝑊𝑊𝑊𝑖𝑖,𝑗𝑗 + 𝛽𝛽6 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗 + 𝛽𝛽7 × 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 + 𝛽𝛽8 ×𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗 + 𝛽𝛽9 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗 + 𝜀𝜀𝑖𝑖,𝑗𝑗
 …………. (4) 

i corresponds to the monitoring site for PM2.5, while for the other variables, it represents the 
nearest (to the corresponding monitoring site) grid. j corresponds to the day. 𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑 and 𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑 
correspond to the day-specific random intercept and random slope, while other regression 
coefficients are fixed effects. 𝜀𝜀𝑖𝑖,𝑗𝑗  is the error term. 

As PM2.5 estimates obtained in the study are intended to be used for formulating policy 
recommendations, the model is configured to predict the daily mean PM2.5 (for which a national 
threshold of 60 µg m-3 is prescribed). Hereafter, PM2.5 represents the daily mean values. In the 
case of AOD, Terra-MODIS and Aqua-MODIS average were considered the daily mean. MODIS 
NDVI is only one value per day (after temporal interpolation), and ELV is a spatial variable and 
temporally invariant.  

In a sensitivity exercise, we found that the PM2.5 predictions were better (in terms of accuracy 
and precision) (i) when meteorological and auxiliary variables were also considered predictors 
(in addition to AOD) and (ii) when configured with daily mean predictors. We also observed no 
difference in the model performance with and without WD and CWV inclusion. 

Equation 4 assumes that the day-to-day variability in the AOD–PM2.5 linear relationship is 
spatially invariant. Using data from 35 PM2.5 monitoring stations (which spread across the 
Beijing municipality area of ~16,400 km2), Xie et al. (2015) have demonstrated marginal 
improvement in the model performance when site-specific random effects were introduced (in 
addition to day-specific random effects). Also, the incorporation of site-specific random effects 
hinders predicting PM2.5 over grids with no monitoring sites (unless the site-specific random 
regression coefficients are interpolated over the study region). Site-specific random effects 
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were not incorporated in the current model; instead, two separate models were configured each 
for the North Indian (Delhi-NCR and Kanpur) and South Indian (Bengaluru) study regions. 

6.2 Random forest (RF) model 
Random Forest (a supervised machine learning algorithm) is an ensemble method that uses 
results from multiple decision-tree regressors to decrease the variance of the developed model. 
In this method, multiple decision trees are modelled using samples drawn from the data set 
without replacement, also known as the bagging approach. The results from the decision trees 
are then averaged to give the final result of the random forest. In the case of classification, the 
result from the most number of decision trees is used as the final result. In the current study, 
the RF model (to estimate the daily mean PM2.5) was developed using the random forest 
regressor module of the scikit-learn library (Python).  

6.3 Model validation 
To assess the precision and accuracy of the model predictions, we performed a 10-fold CV and 
leave-one-out (LOO) CV. CV is a statistical method to investigate the model performance on 
unseen data. In the 10-fold CV exercise, the total data were randomly split into 10 equal groups. 
The model is trained with 9 data groups (training groups), and the data in the tenth group (test 
group) were predicted and compared. The process was repeated 10 times until each unique 
group was used as the test group. In the LOOCV exercise, the model is trained with data from all 
stations except one particular station. Data from the remaining station were predicted and 
compared. The process was repeated k (number of stations) times until each unique station 
data were predicted. 

The precision and accuracy of the model predictions were quantified using the following 
statistical parameters: 

1. Coefficient of determination (R2) 
2. Mean absolute bias (MAB) 
3. Root Mean Square Error (RMSE) 
4. Normalised Root Mean Square Error (NRMSE) 
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where P and O are the predictions and observations, respectively, and n is the number of data 
pairs.  

6.4 Monitoring stations 
We used hourly PM2.5 data from 89 CAAQMS (Figure 2) spread across Delhi-NCR, UP, and 
Karnataka. Data from all these urban stations were considered to build the LME models. Out of 
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the 89 stations, 14 were from Karnataka and the rest were from Delhi-NCR and UP. The list of 
CAAQMS along with the geographical coordinates and yearly mean (2019) PM2.5 and AOD over 
those station locations are given in Table A1 (see Appendix A). 

 
Figure 2: Geographical locations of the 89 CAAQMS overlaid on the state boundaries of (a) Karnataka and (b) UP. The 

blue line in panel (b) represents Delhi-NCR.  

6.5 Hotspot analysis 
Hotspots are relatively small areas (or pixel clusters) characterised by higher attribute values in 
comparison with their surrounding areas. In this study, we used statistical techniques based on 
spatial autocorrelation to identify PM2.5 hotspots over the study regions. We used an ArcGIS-
based hotspot analysis tool that calculates the Getis-Ord Gi* statistic (Getis & Ord, 1992) to 
examine the spatial patterns of PM2.5 at a local scale. The application of this tool returns z-scores 
(Gi* statistic) and p-values that help in identifying the spatial clusters of high (hotspots) and low 
(cold spots) values and their statistical significance. To qualify as a statistically significant 
hotspot, an identified feature with high value should be surrounded by other features with high 
values—vice versa for a cold spot. A statistically significant higher positive Gi* statistic indicates 
an intense clustering of high values. Similarly, a statistically significant smaller negative Gi* 
statistic indicates intense clustering of low values. This methodology has been widely used to 
identify pollution hotspots (Habibi et al., 2017). Gi* statistic is calculated using the following 
equations: 
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In the above equations, 𝑥𝑥𝑗𝑗 is the attribute value (PM2.5 in this study) for feature j, 𝑛𝑛 is the total 
number of features, and 𝑤𝑤𝑖𝑖.𝑗𝑗 is the spatial weights between features i and j. 

6.6 Rural, peri-urban, urban, and uninhabited pixel classification 
To identify the land cover type, Global Human Settlement Layer Settlement Model (GHSL-
SMOD) data were used. GHSL utilises data from high-resolution satellite imagery, census, and 
volunteered geographic information. GHSL-SMOD identifies human settlements and their extent 
by mapping the types of urban areas consistently and systematically across the globe 
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(Melchiorri et al., 2018; Chowdhury et al., 2019). In the present study, the 1 km pixels were 
categorised into 4 classes: uninhabited (very low-density settlement), rural (small and low-
density settlement), peri-urban (semi-settlement), and urban (large, dense, and medium 
settlement).  
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7. Results 
7.1 Spatio-temporal variations in the daily mean PM2.5 and AOD 
Box plots shown in Figure 3 depict spatio-temporal variations in the daily mean (derived from 
hourly CAAQMS measurements) PM2.5 for the year 2019. The calendar year is classified into four 
seasons, viz. winter (WIN; January, February), summer (SUM; March, April, May), monsoon 
(MON; June, July, August, September), and post-monsoon (PMN; October, November, 
December). In the box plots, the solid dot represents the mean, the central line of the box 
represents the median, the boxes represent the 25 and 75 percentiles, and whiskers represent 
the minimum and maximum values of the distribution.  

 
Figure 3: Spatio-temporal variations in the daily mean PM2.5. Individual stations’ data from each region were 

combined.  

In line with the earlier studies, the CAAQMS-measured PM2.5 values over the northern Indian 
study regions (Delhi-NCR and Kanpur) were much higher than the values observed over the 
southern Indian study region (Bengaluru). PM2.5 over Delhi-NCR and Kanpur were comparable. 
The seasonal mean PM2.5 over Delhi-NCR and Kanpur ranged between 165 ± 77.6 and 31 ± 14.6 
µg m-3. Over Bengaluru, it ranged between 50 ± 13.6 and 21 ± 9.9 µg m-3. Seasonally, the highest 
mean values were observed during PMN/WIN and the lowest during MON across the study 
regions. Seasonal PM2.5 statistics are shown in Table 2. 

Variations in the daily mean AOD (Terra-MODIS and Aqua-MODIS mean AOD) over the CAAQMS 
locations (nearest grid) are shown in Figure 4. The absolute values of AOD and their seasonal 
spread are higher over Delhi-NCR and Kanpur. Heterogeneity in the seasonal AOD pattern is 
observed across the study regions. Over Bengaluru, SUM AOD is higher than WIN AOD, while a 
contrasting pattern can be observed over Delhi-NCR and Kanpur. The observed Bengaluru 
seasonal AOD variations followed the climatological pattern shown in the study by Sreekanth 
(2013). Seasonal high AOD values were observed during PMN over Delhi-NCR and Kanpur, 
while it was during SUM over Bengaluru. Seasonal AOD statistics are shown in Table 3. 

Seasonal box plots for all other predictors are shown in Appendix A (Figures A5–A10).  
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Table 2: Season-wise daily mean PM2.5 statistics. IQR and SD represent the interquartile range and standard 
deviation, respectively. 

Study 
region Season 

Minimum 

(µg m-3) 
Maximum 

(µg m-3) 
Mean 

(µg m-3) 
SD      

(µg m-3) 
Median 
(µg m-3) 

IQR    
(µg m-3) 

Delhi-NCR 

WIN 19 477 153 84.1 134 112.3 

SUM 12 302 85 35.3 80 44.0 

MON 4 273 46 24.4 41 30.9 

PMN 8 492 160 93.3 135 126.4 

Kanpur 

WIN 27 340 157 80.7 147 120.2 

SUM 24 107 65 18.3 64 25.8 

MON 7 78 31 14.6 29 20.1 

PMN 29 343 165 77.6 169 133.2 

Bengaluru 

WIN 19 99 50 13.6 49 18.7 

SUM 14 124 45 16.1 42 14.7 

MON 4 93 21 9.9 20 13.0 

PMN 3 110 33 16.4 31 20.5 

 

 
Figure 4: Spatio-temporal variations in the daily mean AOD  

 

 

  



 

                                www.cstep.in    

CSTEP 

33 

Table 3: Season-wise AOD statistics. IQR and SD represent the interquartile range and standard deviation, 
respectively. 

Study 
region Season Minimum Maximum Mean SD Median IQR 

Delhi-NCR 

WIN 0.021 2.609 0.608 0.411 0.487 0.575 

SUM 0.015 1.536 0.378 0.175 0.356 0.208 

MON 0.015 2.879 0.688 0.442 0.607 0.270 

PMN 0.117 3.276 1.053 0.648 0.947 0.697 

Kanpur 

WIN 0.084 2.738 0.601 0.461 0.515 0.342 

SUM 0.054 0.814 0.343 0.126 0.337 0.161 

MON 0.353 2.337 0.689 0.541 0.489 0.184 

PMN 0.281 3.276 1.206 0.939 0.902 1.067 

Bengaluru 

WIN 0.119 0.817 0.341 0.134 0.334 0.162 

SUM 0.165 1.097 0.500 0.212 0.441 0.286 

MON 0.507 0.507 0.507 0.000 0.507 0.000 

PMN 0.132 0.963 0.356 0.125 0.333 0.157 

 

7.2 Model evaluation 
Figures 5 and 6 show the model (Equation 5) performance in terms of 10-fold CV and LOOCV. 
Figure 5 corresponds to Delhi-NCR and Kanpur model, while Figure 6 is for the Bengaluru 
model. In Figures 5 and 6, the black solid line represents the 1:1 line, while the red solid line is 
the linear regression fit to the data. Statistics are given in each of the panels. 

 
Figure 5: Density scatter plots depicting the model-predicted daily mean PM2.5 and measured daily mean PM2.5 (the 

Delhi-NCR and Kanpur model)  
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Figure 6: Density scatter plots depicting the model-predicted daily mean PM2.5 and measured daily mean PM2.5 (the 
Bengaluru model) 

The Bengaluru model was less efficient in terms of the coefficient of determination (R2). This 
could be because of the availability of fewer data points for model training. Also, R2 values are 
highly sensitive to outliers. But the normalized root mean square error (NRMSE) values are 
comparable between both the models. In both models, the R2 value decreased marginally during 
cross-validation. To evaluate the model performance at different temporal averaging scales, the 
monthly mean from the predicted daily PM2.5 and the monthly mean from the measured PM2.5 
were compared and are shown in Figure A11. LME model predictions were more accurate when 
daily averages were aggregated to the monthly scale. All the performance statistics were 
improved for the monthly comparison. For the Bengaluru model, the 10-fold CV R2 improved 
from 0.49 to 0.63 (Figure A11). The seasonal scale (plots not shown because of the small 
number of data points) averaging has further improved the performance statistics. A majority of 
the results obtained in the present study were presented on seasonal scales. 

For comparison, we also trained another LME model, incorporating site-specific random effects 
(random intercept) in addition to day-specific random effects. Figure A12 corresponds to Delhi-
NCR and Kanpur model, while Figure A13 is for the Bengaluru model. We observed a marginal 
improvement in site- and day-specific random-effects model performance when compared to 
the performance of the day-specific only random-effects model. We haven’t adopted the site-
specific and day-specific random effects LME model in the current study as the site-specific 
random coefficients need to be interpolated for the grids in which no monitoring station is 
located. 

In addition to statistical models, we also constructed a machine learning–based model to 
compare its performance with that of the LME model. The performance (in terms of CV) of the 
random forest (RF) model (for Delhi-NCR and Kanpur) is shown in Figure A14. In terms of R2, 
MAB, RMSE, and NRMSE, both LME and RF models performed almost equally. These results are 
in contrast to the observations of Mhawish et al. (2020). This could be because the estimate in 
the current study is the daily mean PM2.5, while it is 10 to 14 h LT mean PM2.5 in Mhawish et al. 
(2020). Based on these results, we adopted the LME (with day-specific random effects) model 
for spatial predictions of the daily mean PM2.5. 

All the training data used in the current study are urban-centric. The LME model trained with 
urban PM2.5 was used for regional spatial predictions, which include rural and peri-urban areas. 
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To investigate the model’s efficacy in predicting rural PM2.5, BAM-measured PM2.5 data from a 
rural location in UP were considered. The BAM is being operated by the Indo Gangetic Plains 
Center for Air Research and Education (IGPCARE) research station in the Ruri Para village 
(25.815oN, 79.918oE), Hamirpur district of UP. The LME (Delhi-NCR and Kanpur model) 
predicted daily mean PM2.5 and the BAM measured PM2.5 were compared (Figure A15) for the 
SUM season. Grossly, the models’ predictions overestimate with an NRMSE value of 0.22. This 
value is less compared to CV NRMSE (Figure 5), indicating the comparable performance of the 
model in predicting urban and rural PM2.5. 

7.3 Spatial maps of PM2.5 

7.3.1 Delhi-NCR region 
Figure 7 shows the annual mean map of PM2.5 over Delhi-NCR. Over each 1 km grid, individual 
predicted daily mean PM2.5 values for the year 2019 were averaged to obtain the annual mean 
PM2.5. The spatially averaged annual mean PM2.5 for the year 2019 for Delhi-NCR was 101 ± 7.5 
µg m-3 (value after ± is the standard deviation). Grid-wise annual mean PM2.5 values ranged 
between 80 and 130 µg m-3. These values could be an overestimate owing to the data gaps in the 
estimated MON PM2.5.  

During MON, PM2.5 levels are expected to be lower than normal. This data gap can lead to an 
overestimation of the annual mean PM2.5 over a particular grid. Using the CAAQMS-measured 
and the corresponding grid-LME-predicted daily mean PM2.5, the overestimation in the model 
predicted annual mean values was found to be ~12%. The annual mean PM2.5 was found to 
exceed the Indian annual threshold (40 µg m-3) over all the pixels of Delhi-NCR. The highest 
PM2.5 levels (~130 µg m-3) were observed over the National Capital Territory (NCT) region.  

The districts of Gurugram, Faridabad, Nuh, Palwal, and Bharatpur in the NCR also observed 
higher concentrations of PM2.5 in the range 105–120 µg m-3. Over other regions of the NCR, the 
PM2.5 range was observed to be 80–100 µg m-3. Figure 7(b) shows the frequency distribution of 
gridded annual mean PM2.5 values over Delhi-NCR for the study year. There were a total of 
64,221 grids (1 km size) covering Delhi-NCR. The frequency distribution of PM2.5 was right-
skewed, and ~86% of the PM2.5 values were observed in the range of 90–110 µg m-3. About 2% 
of the data exceeded 120 µg m-3 (three times the annual standard).  

 
Figure 7: The spatial map of the annual mean PM2.5 over Delhi-NCR and its frequency distribution 
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Figure 8: The seasonal mean PM2.5 maps over Delhi-NCR 

Figure 8 shows seasonal mean maps of PM2.5 over Delhi-NCR. The seasonal maps exhibited 
significant spatial and temporal variations in PM2.5 across Delhi-NCR. Seasonally, WIN and PMN 
were the most polluted seasons, while MON was characterised by the lowest PM2.5 levels. The 
highest PM2.5 values were observed during WIN (134 ± 16.0 µg m-3) followed by PMN (131 ± 
11.9 µg m-3), SUM (79 ± 5.3 µg m-3), and MON (57± 8.2 µg m-3). See Table 4 for more statistics. 
Over the NCT region, WIN and PMN PM2.5 were as high as ~160 µg m-3. Higher values were also 
identified in the eastern districts of NCR during WIN.  

7.3.2 Kanpur region 
The annual mean spatial map of the predicted PM2.5 over the Kanpur region is shown in Figure 
9. The spatial map includes both rural (Kanpur Dehat) and urban (Kanpur Nagar) districts of 
Kanpur. The spatially averaged annual mean PM2.5 for the year 2019 was 108 ± 4.5 µg m-3. Over 
Kanpur urban, PM2.5 values were as high as 130 µg m-3. The frequency distribution of the 
gridded spatial PM2.5 values is shown in Figure 9(b). There were a total of 7,189 grids (1 km 
size) covering both the rural and urban areas of Kanpur. The frequency distribution exhibits a 
log-normal distribution with modal PM2.5 values ~108 µg m-3. The annual mean PM2.5 over all 
the spatial grids exceeded the national annual standard (40 µg m-3). 
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Figure 9: The spatial map of the annual mean PM2.5 over the Kanpur region and its frequency distribution 

The seasonal mean of PM2.5 concentrations over Kanpur is shown in Figure 10. Among seasons, 
WIN recorded the highest PM2.5 (141 ± 9.4 µg m-3) followed by PMN (138 ± 6.7 µg m-3), SUM (81 
± 3.3 µg m-3), and MON (71 ± 5.6 µg m-3). The seasonal variation of PM2.5 over Kanpur is similar 
to that observed over Delhi-NCR. The seasonal mean PM2.5 values were slightly higher over 
Kanpur compared to Delhi-NCR.  

 
Figure 10: The seasonal mean PM2.5 maps over the Kanpur region 

7.3.3 Bengaluru region 
The gridded annual mean PM2.5 over the Bengaluru study region is shown in Figure 11(a). The 
Bengaluru region includes urban, peri-urban, and rural areas (Bengaluru urban and Bengaluru 
rural districts). Compared to Kanpur and Delhi-NCR, PM2.5 over Bengaluru was lower by almost 
three times. The annual mean concentrations varied between 35 and 55 µg m-3 with maximum 
concentrations (~55 µg m-3) recorded over Bengaluru urban. The Bengaluru annual mean PM2.5 
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values again could be an overestimation because of the missing MON PM2.5 estimation due to 
corresponding AOD data gaps. The number of MON days with missing AOD data over Bengaluru 
was much higher than that of Delhi-NCR and the Kanpur region.  

Based on the CAAQMS year-round data and model-predicted corresponding gridded daily mean 
PM2.5 values, the Bengaluru model–predicted annual mean PM2.5 was found to be ~30% to 35% 
overestimated. In the case of Bengaluru, the emphasis was more on seasonal maps rather than 
the annual map. The spatially averaged annual mean PM2.5 for the study year was 44 ± 2.5 µg m-

3. Figure 11(b) shows the frequency distribution of the annual mean PM2.5 concentrations. In 
total, 5,244 grids (1 km size) cover the Bengaluru urban, peri-urban, and rural areas. The 
frequency distribution exhibits a modal PM2.5 value of ~43 µg m-3. Over the Bengaluru region, 
~98% of the gridded annual mean PM2.5 values exceeded the national annual standard (40 µg m-

3). 

 
Figure 11: The spatial map of the annual mean PM2.5 over the Bengaluru region and its frequency distribution 

Figure 12 depicts the seasonal mean maps of PM2.5 over the Bengaluru region. As expected, the 
MON concentrations were the lowest, WIN saw the highest, and PMN PM2.5 was moderate. 
Spatial gaps in PM2.5 during MON because of the missing AOD is evident from the figure. The 
highest mean PM2.5 values were noted in WIN (49 ± 2.8 µg m-3) followed by SUM (44 ± 2.5 µg m-

3), PMN (34 ± 3.6 µg m-3), and MON (16 ± 4.0 µg m-3) seasons (Table 4). Over Bengaluru, SUM 
PM2.5 values followed WIN values, while over Delhi-NCR and Kanpur, PMN values followed WIN 
values. This pattern was observed in CAAQMS PM2.5 measurements also (Figure 3). 
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Figure 12: The seasonal mean PM2.5 maps over the Bengaluru region 

Table 4: Annual and seasonal mean PM2.5 statistics. IQR and SD represent the interquartile range and standard 
deviation, respectively.  

 Delhi-NCR Kanpur region Bengaluru region 

Season 

Mean 

(SD) 

(µg m-3) 

Median 
(IQR) 

(µg m-3) 

Mean 
(SD) 

(µg m-3) 

Median 
(IQR) 

(µg m-3) 

Mean 
(SD) 

(µg m-3) 

Median 
(IQR) 

(µg m-3) 

WIN 134 
(16.0) 133 (25.8) 141 (9.4) 139 (11.3) 49 (2.8) 48 (4.0) 

SUM 79 (5.3) 79 (7.0) 81 (3.3) 81 (4.4) 44 (2.5) 43 (3.0) 

MON 57 (8.2) 58 (12.0) 71 (5.6) 70 (7.0) 16 (4.0) 15 (5.0) 

PMN 131(11.9) 130 (15.7) 138 (6.7) 137 (7.2) 34 (3.6) 34 (5.0) 

Annual 101 (7.5) 100 (10.5) 108 (4.5) 107 (4.5) 44 (2.5) 44 (3.3) 

 

7.3.4 Urban areas of Delhi, Kanpur, and Bengaluru 
Spatial maps of the annual and seasonal mean PM2.5 for the urban areas of Delhi, Kanpur, and 
Bengaluru are shown in this subsection.  

The municipal corporation of Delhi-NCT is divided into 11 revenue districts (North, North East, 
North West, West, South, South West, South East, New Delhi, Central, Shahdara, and East) and 
290 wards. Figures 13 and 14 show the annual and seasonal mean spatial distribution of PM2.5 
over Delhi-NCT, overlaid with revenue district and ward boundaries. The estimated annual 
mean ± SD (median ± IQR) concentration of PM2.5 across Delhi-NCT for the study year was 117 ± 
6.8 µg m-3 (116 ± 11.0 µg m-3). The gridded maximum and minimum mean PM2.5 values were 
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~102 and 134 µg m-3, respectively. The seasonal and annual mean PM2.5 for the 11 revenue 
districts are given in Table 5. The highest annual mean PM2.5 estimated was for the Shahdara 
district (~126 µg m-3) followed by the East (~124 µg m-3), West (~122 µg m-3), South East 
(~120 µg m-3), North East and Central (~119 µg m-3), North West (~118 µg m-3), New Delhi 
(~116 µg m-3), South (~115 µg m-3), North (~114 µg m-3), and South West (~113 µg m-3) 
districts.  

 
Figure 13: The spatial map of the annual mean PM2.5 over Delhi-NCT region with overlaid revenue district and ward 

boundaries 

 

Figure 14: Spatial maps of the seasonal mean PM2.5 over Delhi-NCT 

Table 5: Annual and seasonal statistics of PM2.5 for various Delhi-NCT revenue districts. IQR and SD represent the 
interquartile range and standard deviation, respectively.  

Delhi-NCT revenue districts Season 
Minimum 

(µg m-3) 

Maximum 

(µg m-3) 

Mean (SD) 

(µg m-3) 

Median (IQR) 

(µg m-3) 

East 

WIN 158 179 169 (4.4) 170 (5.5) 

SUM 76 95 88 (4.0) 88 (5.1) 

MON 47 79 67 (5.9) 67 (6.7) 

PMN 154 174 164 (4.7) 164 (6.3) 

Annual 113 133 124 (3.9) 123 (4.5) 
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North East 

WIN 126 183 166 (13.2) 170 (13.8) 

SUM 67 96 85 (8.1) 85 (14.6) 

MON 44 80 67 (8.1) 66 (13.4) 

PMN 142 173 160 (6.7) 161 (9.8) 

Annual 103 132 119 (8.2) 121 (14.7) 

Central 

WIN 126 183 166 (10.1) 169 (10.0) 

SUM 67 92 82 (5.0) 82 (7.0) 

MON 40 77 62 (6.6) 62 (9.6) 

PMN 142 177 161 (6.2) 161 (8.7) 

Annual 103 131 119 (5.7) 119 (7.6) 

New Delhi 

WIN 149 181 166 (6.1) 166 (8.0) 

SUM 69 88 78 (4.0) 78 (5.7) 

MON 48 72 58 (5.4) 58 (8.0) 

PMN 137 174 156 (7.3) 156 (9.6) 

Annual 106 128 116 (4.6) 116 (6.3) 

North 

WIN 123 187 155 (14.9) 156 (25.0) 

SUM 76 94 83 (3.2) 83 (4.1) 

MON 47 78 67 (4.3) 67 (5.9) 

PMN 130 171 152 (7.3) 151 (9.8) 

Annual 102 130 114 (6.3) 113 (9.5) 

North West 

WIN 121 182 158 (16.7) 162 (31.2) 

SUM 77 93 84 (3.1) 84 (3.8) 

MON 51 77 68 (4.3) 68 (6.5) 

PMN 142 188 159 (7.7) 158 (10.9) 

Annual 105 132 118 (6.4) 118 (11.4) 

Shahdara 

WIN 166 183 174 (4.2) 174 (6.2) 

SUM 78 96 91 (3.5) 91 (3.4) 

MON 59 80 73 (4.6) 73 (6.1) 

PMN 154 174 165 (5.1) 164 (7.9) 

Annual 117 134 126 (3.8) 126 (5.5) 

South 
WIN 142 172 157 (5.4) 157 (5.7) 

SUM 67 88 78 (4.5) 78 (6.0) 
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MON 44 70 57 (5.1) 57 (7.2) 

PMN 136 173 152 (8.0) 151 (12.9) 

Annual 102 129 115 (5.4) 115 (7.7) 

South East 

WIN 154 195 167 (7.3) 165 (8.0) 

SUM 70 90 80 (4.4) 80 (5.9) 

MON 40 69 58 (5.4) 58 (6.8) 

PMON 150 176 163 (5.7) 163 (7.9) 

Annual 109 133 120 (5.2) 120 (6.8) 

South West 

WIN 132 181 154 (11.5) 152 (16.4) 

SUM 62 92 80 (5.5) 80 (7.6) 

MON 46 74 62 (4.7) 63 (5.7) 

PMON 132 188 151 (10.1) 148 (11.6) 

Annual 102 131 113 (6.2) 111 (7.6) 

West 

WIN 141 181 169 (10) 173 (12.2) 

SUM 66 92 83 (5.3) 84 (5.3) 

MON 43 76 65 (5.4) 65 (6.2) 

PMON 138 188 166 (8.9) 167 (10.5) 

Annual 105 131 122 (6.1) 124 (7.4) 

 

Kanpur urban covers an approximate area of 260 square kilometres. The Kanpur Municipal 
Corporation (KMC) is divided into six zones and 110 wards. All the zones except Zone 6 have 18 
wards each. Annual and seasonal mean spatial maps of PM2.5 for the study year are shown in 
Figures 15 and 16 (with zone and ward boundaries overlaid). The maximum (minimum) annual 
mean value of PM2.5 was ~128 (97) µg m-3. The spatially averaged annual mean PM2.5 value for 
Kanpur urban was 115 ± 7.1 µg m-3. The zone-wise annual and seasonal PM2.5 statistics are given 
in Table 6. Zone 1 annual PM2.5 had the highest values (122 ± 3.9 µg m-3), while Zone 2 had the 
lowest (112 ± 7.5 µg m-3). It has to be noted that the Panki Thermal Power Station is located in 
Zone 5, which is a coal-based thermal power plant having a total generating capacity of 210 MW.  
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Figure 15: The spatial map of the annual mean PM2.5 over Kanpur urban (zone and ward boundaries overlaid) 

 
Figure 16: Spatial maps of the seasonal mean PM2.5 over Kanpur urban 

Table 6: Annual and seasonal statistics of PM2.5 for various Kanpur urban zones. IQR and SD represent the 
interquartile range and standard deviation, respectively.  

Kanpur urban zones Season 
Minimum 

(µg m-3) 

Maximum 

(µg m-3) 

Mean (SD) 

(µg m-3) 

Median (IQR) 

(µg m-3) 

Zone 1 

WIN 163 177 172 (4.3) 172 (6.9) 

SUM 80 95 89 (3.9) 90 (5.7) 

MON 58 71 66 (3.5) 66 (4.5) 

PMN 148 166 157 (5.1) 158 (6.7) 

Annual 114 128 122 (3.9) 123 (5.8) 

Zone 2 

WIN 123 175 156 (11.4) 156 (17.2) 

SUM 71 94 83 (5.4) 82 (8.7) 

MON 50 84 70 (5.6) 70 (6.6) 

PMN 126 168 144 (8.0) 143 (11.6) 
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Annual 97 127 112 (7.5) 111 (11.5) 

Zone 3 

WIN 145 174 169 (8.0) 169 (11.1) 

SUM 79 92 88 (3.0) 89 (4.5) 

MON 52 76 68 (4.1) 68 (5.4) 

PMN 139 161 150 (5.4) 150 (8.3) 

Annual 109 125 119 (4.1) 119 (6.8) 

Zone 4 

WIN 160 177 167 (5.0) 167 (7.0) 

SUM 80 93 87 (3.6) 86 (5.1) 

MON 56 76 65 (5.1) 65 (6.7) 

PMN 147 166 157 (3.9) 157 (4.4) 

Annual 114 125 121 (3.4) 121 (4.6) 

Zone 5 

WIN 135 175 165 (9.9) 165 (14.8) 

SUM 81 92 88 (2.7) 88 (3.5) 

MON 52 77 68 (4.6) 68 (5.9) 

PMN 140 169 153 (6.9) 152 (11.0) 

Annual 108 128 120 (4.9) 121 (7.0) 

Zone 6 

WIN 129 173 159 (9.0) 159 (11.4) 

SUM 73 93 84 (4.8) 84 (5.9) 

MON 43 76 62 (5.7) 62 (7.4) 

PMN 129 168 149 (8.4) 149 (12.4) 

Annual 101 128 116 (6.2) 116 (10.1) 

 

The Bruhat Bengaluru Mahanagara Palike (BBMP) has divided Bengaluru urban into 198 wards 
and eight zones. The zones are Yelahanka, Dasarahalli, Rajarajeshwari Nagar, Bommanahalli, 
South, West, East, and Mahadevapura. The spatial distribution of the annual and seasonal mean 
PM2.5 for the study year are shown in Figures 17 and 18. Annual and seasonal PM2.5 statistics for 
the Bengaluru urban zones are summarised in Table 7. Dasarahalli, Rajarajeshwari Nagar, 
Bommanahalli, South, and West zones exhibited considerable higher PM2.5 values (Figure 17). 
Rajarajeshwari Nagar (~49 ± 2.2 µg m-3) and South (49 ± 2.9 µg m-3) zones had the maximum 
annual PM2.5 values followed by the West (48 ± 2.6 µg m-3), Bommanahalli (48 ± 2.7 µg m-3), and 
Dasarahalli (48 ± 2.9 µg m-3) zones. The Mahadevapura zone had the lowest with an annual 
mean PM2.5 of 44 ± 2.5 µg m-3 for the study year. In the case of Bengaluru, the seasonal mean 
PM2.5 is more representative compared to that of annual mean values, as discussed in earlier 
sections. 

 

 

https://en.wikipedia.org/wiki/Dasarahalli
https://en.wikipedia.org/wiki/Rajarajeshwari_Nagar,_Bangalore
https://en.wikipedia.org/wiki/Bommanahalli
https://en.wikipedia.org/wiki/South
https://en.wikipedia.org/wiki/West
https://en.wikipedia.org/wiki/East
https://en.wikipedia.org/wiki/Mahadevapura
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Figure 17: The spatial map of the annual mean PM2.5 over Bengaluru urban (zone and ward boundaries overlaid) 

 
Figure 18: Spatial maps of the seasonal mean PM2.5 over Bengaluru urban 

Table 7: Annual and seasonal statistics of PM2.5 for various Bengaluru urban zones. IQR and SD represent the 
interquartile range and standard deviation, respectively.  

Bengaluru urban zones Season 
Minimum 

(µg m-3) 

Maximum 

(µg m-3) 

Mean (SD) 

(µg m-3) 

Median(IQR) 

(µg m-3) 

Bommanahalli 

WIN 43 59 52(3.2) 51 (5.0) 

SUM 36 50 45 (2.4) 45 (3.4) 

MON 13 21 17 (2.5) 17 (2.6) 

PMN 33 48 41 (3.8) 40 (5.9) 

Annual 41 53 48 (2.7) 47 (4.5) 

 

Yelahanka 

WIN 46 56 49(1.4) 49 (1.8) 

SUM 36 47 42 (1.8) 42 (2.3) 

MON 13 25 19 (3.1) 19 (5.4) 
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PMN 32 43 38 (2.1) 38 (2.8) 

Annual 42 51 45 (1.3) 45 (1.3) 

Dasarahalli 

WIN 49 58 53 (2.4) 53 (3.7) 

SUM 41 55 47 (3.1) 46 (3.7) 

MON 15 31 22 (3.8) 23 (4.1) 

PMN 34 47 40 (3.1) 40 (4.9) 

Annual 44 55 48 (2.9) 47 (3.5) 

East 

WIN 42 54 50 (1.9) 50 (2.6) 

SUM 33 50 42 (2.3) 42 (3.2) 

MON 12 26 21 (3.5) 22 (4.7) 

PMN 32 44 39 (2.0) 39 (2.6) 

Annual 38 49 45 (1.8) 45 (2.4) 

Mahadevapura 

WIN 40 55 49 (2.7) 49 (3.3) 

SUM 32 47 42 (2.4) 42 (2.6) 

MON 5 25 16 (4.5) 15 (5.3) 

PMN 28 44 38 (3.0) 38 (4.4) 

Annual 36 50 44 (2.5) 45 (3.9) 

Rajarajeshwari Nagar 

WIN 49 58 53 (1.8) 53 (2.6) 

SUM 39 55 47 (2.8) 47 (3.6) 

MON 13 32 23 (4.5) 23 (7.2) 

PMN 34 42 40 (3.2) 40 (4.9) 

Annual 44 55 49 (2.2) 49 (2.9) 

South 

WIN 47 59 53 (2.9) 53 (4.8) 

SUM 41 52 46 (3.0) 46 (5.0) 

MON 14 21 19 (2.7) 19 (4.0) 

PMN 36 48 42 (3.3) 42 (4.9) 

Annual 43 55 49 (2.9) 49 (5.0) 

West 

WIN 48 59 53 (2.3) 53 (3.5) 

SUM 36 53 45 (3.9) 46 (5.7) 

MON 17 27 23 (2.4) 23 (2.9) 

PMN 33 47 41 (2.8) 41 (3.7) 

Annual 43 54 48 (2.6) 48 (3.7) 
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7.4 PM2.5 hotspots 

7.4.1 Delhi-NCR region 
PM2.5 hotspot areas over Delhi-NCR are shown in Figure 19 (left panel). The hotspot analysis 
shown in the figure was carried out on the annual mean map of PM2.5. Note that the hotspot 
identification is subject to the spatial extent of the study area. In Delhi-NCR, most of the NCT 
region and its surrounding areas were identified as hotspots (with the highest confidence level). 
Scattered hotspots were also identified in the districts of Nuh, Bharatpur, Meerut, and Sonipat. 
The right panel of Figure 19 shows the GHSL-SMOD settlement classification. Most of the 
hotspot areas coincided with urban areas. Within Delhi-NCT, all the revenue districts were 
identified as hotspot areas. 

PM2.5 hotspots were also identified based on seasonal mean maps of PM2.5 (Figure 20). During 
WIN and PMN, hotspots were spread over Delhi-NCT and surrounding districts. No pattern was 
observed in MON hotspots. The PM2.5 levels in the hotspot areas can be different across seasons. 
During SUM, hotspot areas were also observed in the Bharatpur district of Rajasthan. This could 
be because of the frequent summertime dust storms over that region. Within Delhi-NCT, during 
WIN, the entire districts of North East, Central, and Shahdara and parts of East, New Delhi, 
North, North West, South, South East, South West, and West were identified as hotspots. During 
SUM, the entire district of Shahdara and parts of East, North East, Central, North, North West, 
South West, and West were identified as hotspots. During PMN, the entire districts of East, 
North East, Central, New Delhi, Shahdara, South-East, West and parts of New Delhi, North, North 
West, South, and South West were identified as hotspots. 

 
Figure 19: Annual hotspot analysis for Delhi-NCR. The right panel corresponds to the GHSL-SMOD settlement 

classification. 
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Figure 20: Seasonal hotspot analysis for Delhi-NCR  

7.4.2 Kanpur region 
Figure 21 (left panel) presents the hotspot analysis for the Kanpur region. Hotspot areas were 
observed in the Kanpur urban district, particularly in Kanpur city. All the zones (except parts of 
Zones 2 and 6) of Kanpur city were identified as hotspot areas. PM2.5 hotspots were observed 
along the river basins also.  

WIN hotspot areas resembled the annual hotspot areas. During SUM, the entire Zone 1 and parts 
of all other zones were identified as hotspot areas. During PMN, the entire Zones 1 and 4 and 
parts of Zones 2, 3, and 5 were observed as hotspot areas. For MON, no grids were identified as 
hotspots with the highest confidence level.  
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Figure 21: Annual hotspot analysis for the Kanpur region  

 

 

Figure 22: Seasonal hotspot analysis for the Kanpur region 
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7.4.3 Bengaluru region 
Annual and seasonal hotspot analyses for the Bengaluru region are shown in Figures 23 and 24. 
Most of the hotspot areas were within the urban district of Bengaluru. Parts of Bommanahalli, 
Dasarahalli, Rajarajeshwari Nagar, and South and West zones were observed as hotspot areas 
on annual and seasonal scales (except MON). During SUM, hotspot areas were observed in the 
Greater Bengaluru region also.  

 
Figure 23: Annual hotspot analysis for the Bengaluru region  
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Figure 24: Seasonal hotspot analysis for the Bengaluru region 

 

7.5 Spatial gradients 
To understand the rural, peri-urban, and urban contrast in PM2.5 (over the study regions), PM2.5 
estimates over the GHSL-SMOD identified different settlement classes were aggregated and 
plotted at annual and seasonal scales.  

7.5.1 Delhi-NCR region 
For this region, the uninhabited, rural, peri-urban, and urban areas constituted ~59.8%, 24.0%, 
4.6%, and 11.6%, respectively. The box plot (see Figure 25) depicts the variation in the annual 
mean PM2.5 for different settlement classes/areas of Delhi-NCR. Spatially, the highest mean 
values were observed for urban settlements (109 ± 9.4 µg m-3) and the lowest (100 ± 6.6 µg m-3) 
for the uninhabited class. The rural and uninhabited PM2.5 mean, median, maximum, minimum, 
and percentiles values were comparable. The spatial gradients in the annual mean PM2.5 were 
not as steep as expected. Peri-urban and urban settlement classes exhibited a mere difference of 
~7 µg m-3.  
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Figure 25: Variations in the annual mean PM2.5 for Delhi-NCR for the identified settlement classes: uninhabited, rural, 

peri-urban, and urban  

Figure 26 shows variation in the seasonal mean PM2.5 for different settlement classes of Delhi-
NCR. Seasonally, the WIN and PMN mean PM2.5 values were higher, while MON observed the 
lowest PM2.5 for all settlement classes. The annual and seasonal mean PM2.5 statistics for the 
different settlement classes of Delhi-NCR are given in Table 8. SUM and MON variations were 
shallower compared to other seasons. 

 

Figure 26: Variations in the seasonal mean PM2.5 for Delhi-NCR for the identified settlement classes  

7.5.2 Kanpur region 
Figure 27 shows the variations in the annual mean PM2.5 between various settlement classes of 
the Kanpur region. For the Kanpur region, the uninhabited, rural, peri-urban, and urban areas 
constituted ~73.0%, 19.8%, 0.2%, and 6.9%, respectively. From the figure, it can be observed 
that the urban area was characterised by the highest mean PM2.5 (114 ± 6.4 µg m-3), followed by 
peri-urban (112 ± 4.4 µg m-3), rural (108 ± 4.6 µg m-3), and uninhabited (107 ± 3.7 µg m-3) 
settlement classes. 
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Figure 27: Variations in the annual mean PM2.5 for the Kanpur region for the identified settlement classes 

The seasonal mean of PM2.5 values over Kanpur for different settlement classes are shown in 
Figure 28. Similar to that observed over Delhi-NCR, SUM and MON gradients were shallower. 
MON PM2.5 remained the lowest with no variations across settlement classes. Statistics are given 
in Table 8.  

 

 
Figure 28: Variations in the seasonal mean PM2.5 of the Kanpur region for the identified settlement classes 

7.5.3 Bengaluru region 
The PM2.5 values over the Bengaluru region were almost three times lower compared to Delhi-
NCR and Kanpur region. For the Bengaluru region, the uninhabited, rural, peri-urban, and urban 
areas constituted ~49.6%, 27%, 3.7%, and 19.7%, respectively. Figure 29 depicts the variation 
in annual PM2.5 values for different settlement classes across the Bengaluru region. The annual 
observed mean PM2.5 values for urban, peri-urban, rural, and uninhabited settlements were ~46, 
45, 44, and 44 µg m-3, respectively. The rural–urban contrast in annual PM2.5 was hardly 
observed. Seasonal plots are shown in Figure 30. Feeble rural–urban contrast in PM2.5 was 
observed during PMN. No significant gradients in PM2.5 were observed in other seasons.  
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Figure 29: Variations in the annual mean PM2.5 of the Bengaluru region for the identified settlement classes 

 

 
Figure 30: Variations in the seasonal mean PM2.5 of the Bengaluru region for the identified settlement classes 
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Table 8: The annual and season-wise mean PM2.5 statistics for different settlement classes of study regions. IQR and 
SD represent the interquartile range and standard deviation, respectively.  

Study region Settlement class Season 
Mean  

(µg m-3) 

SD     

(µg m-3) 

Median  

(µg m-3) 

IQR     

(µg m-3) 

Delhi-NCR 

Uninhabited 

WIN 132 14.5 130 23.7 

SUM 79 5.5 78 7.2 

MON 56 8.6 57 12.8 

PMN 129 10.3 129 14.8 

Annual 100 6.6 100 9.7 

Rural 

WIN 133 15.1 132 24.9 

SUM 79 4.8 78 6.0 

MON 58 7.4 59 10.9 

PMN 131 10.2 130 14.4 

Annual 101 6.5 100 9.8 

Peri-urban 

WIN 133 16.2 132 25.3 

SUM 79 3.8 79 5.1 

MON 62 5.3 63 6.6 

PMN 133 12.6 130 18.9 

Annual 102 7.8 100 12.5 

Urban 

WIN 151 15.3 153 20.4 

SUM 82 5.0 81 6.8 

MON 60 7.4 61 10.0 

PMN 142 15.3 142 25.1 

Annual 109 9.4 109 14.2 

Kanpur 

Uninhabited 

WIN 139 8.0 138 10.4 

SUM 81 3.1 81 4.3 

MON 71 5.5 71 6.8 

PMN 138 5.9 137 6.8 

Annual 107 3.8 107 4.2 

Rural 

WIN 142 8.9 141 10.8 

SUM 82 3.3 81 4.1 

MON 71 5.6 71 7.2 

PMN 138 7.3 137 7.6 
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Annual 108 4.6 107 4.4 

Peri-urban 

WIN 155 6.5 155 7.2 

SUM 83 4.1 83 5.3 

MON 68 3.6 68 4.6 

PMN 144 5.9 145 5.7 

Annual 112 4.4 113 4.4 

Urban 

WIN 154 12.4 154 21.5 

SUM 84 4.2 84 5.9 

MON 69 6.4 69 7.4 

PMN 145 9.6 143 14.3 

Annual 114 6.4 113 10.7 

Bengaluru 

Uninhabited 

WIN 49 2.8 48 4.3 

SUM 44 2.4 44 3.2 

MON 16 4.1 15 5.0 

PMN 33 2.9 33 4.0 

Annual 44 2.4 44 3.4 

Rural 

WIN 48 2.4 48 3.0 

SUM 44 2.2 43 2.7 

MON 15 3.4 15 4.2 

PMN 34 3.0 33 4.0 

Annual 44 2.1 43 2.4 

Peri-urban 

WIN 50 2.6 49 3.6 

SUM 44 2.2 43 2.5 

MON 18 4.0 17 5.5 

PMN 37 3.6 37 4.8 

Annual 45 2.4 45 3.6 

Urban 

WIN 50 3.0 50 3.6 

SUM 44 3.0 44 3.4 

MON 18 4.5 18 6.9 

PMN 38 3.6 38 4.6 

Annual 46 2.9 45 3.3 

Annual and seasonal mean PM2.5 maps of Indore city (Madhya Pradesh) are given in Appendix B. 
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8. Conclusions 
PM2.5 data are critical for urban planning and epidemiological, environmental, and economic 
studies. However, the limited availability of PM2.5 data is a challenge. This study deals with the 
spatial mapping of high-resolution 1 km × 1 km satellite AOD–based gridded PM2.5 estimates 
and the quantification of PM2.5 over select regions in India. The study regions include the urban, 
peri-urban, and rural areas of Delhi-NCR, Kanpur, and Bengaluru.  

In the study, two linear mixed-effects (LME) models were developed to estimate PM2.5, one for 
the North Indian study regions (Delhi-NCR and Kanpur) and one for the South Indian study 
region (Bengaluru). A suite of satellite (AOD, CWV, NDVI) and reanalysis meteorological 
products was considered predictors for these models. The North India model performed better 
than the South India model in terms of correlation and determination coefficients; their 
performance is comparable in terms of RMSE and NMRSE.  

A key output of this study is high-resolution spatial maps of daily mean PM2.5. Seasonal 
variations (WIN high and MON low) in PM2.5 were observed across the study regions, which are 
in line with earlier studies. PM2.5 in Delhi-NCR and Kanpur region was found to be three times 
higher than that of the Bengaluru region. Within Delhi-NCR, high PM2.5 levels were observed in 
eastern Delhi-NCT (East, Shahdara, South East, and North East) and other regions (Gurugram, 
Faridabad, Nuh, Palwal, and Bharatpur). In the Kanpur region, high PM2.5 levels were observed 
in the Kanpur city. In Bengaluru, high levels were observed in the western part of urban 
Bengaluru and over a few areas in Greater Bengaluru.  

The spatial maps generated were used to identify pollution hotspots. The most noticeable PM2.5 
hotspots were clustered in and around Delhi-NCT. Some isolated hotspots were also observed. 
Most of the hotspots coincided with urban areas of Delhi-NCR. The seasonal hotspot analysis 
identified a high PM2.5 cluster in the Bharatpur district of Rajasthan, which is mostly a remote 
region. This could be due to dust storms that are a frequent phenomenon over that region. The 
Delhi-NCT region—including Shahdara, East, and North East districts—were most severely 
polluted and identified as hotspots across seasons except MON. Shahdara is one of the oldest 
and highly urbanised areas of Delhi-NCT, consisting of residential and industrial establishments. 
MON hotspots need to be considered with caution as the wet deposition (owing to rainfall 
characteristics) of aerosol particles will not be uniform across the region.  

In the Kanpur region, most of the urban zones were identified as PM2.5 hotspot areas. Hotspots 
were identified in most zones (a few zones entirely and a few zones partially) on annual and 
seasonal scales (except MON). Zones 1 and 4 are relatively small in size, largely unplanned, and 
are characterised by a very high general residential and slum population density. Hotspots were 
identified in the grid clusters where industries and residential areas are located. The Panki 
Power Plant located in Zone 5 could also be a major source of PM2.5. Zones 2 and 6 have a large 
number of rural settlements along with agricultural areas.  

PM2.5 hotspots were identified over a lesser spatial extent in the Bengaluru region compared to 
that of Delhi-NCR and Kanpur regions. Hotspots were identified in Dasarahalli, Rajarajeshwari 
Nagar, West, South, Bommanahalli, Mahadevapura, and Yelahanka zones. The hotspots 
coincided with some of the industrial hubs such as Peenya Industrial Area (Dasarahalli zone), 
ITPL (International Tech Park Ltd.), Graphite India (Mahadevapura zone), and the Karnataka 
Housing Board industrial area (Yelahanka zone). A recent study by the Karnataka State 
Pollution Control Board (2020) recorded a Comprehensive Environmental Pollution Index 
(CEPI) score of ~65.11 for the Peenya Industrial Cluster, declaring it a severely polluted area.  
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The current study also clearly identified Peenya and surrounding areas as hotspots. The areas 
include Hegganahalli, Doddanna Industrial Estate, Herohalli, Doddabidarakallu, Nagarabhavi II 
Stage, and Laggere wards. Bommanahalli also houses red and orange category industries. The 
Greater Bengaluru PM2.5 hotspots (observed during WIN and SUM) coincided with the stone-
crushing locations. The noticeable PM2.5 hotspot region in Bengaluru rural was located in the 
Tubagere town, Doddaballapura Taluk. Open burning in and around the town has the potential 
to enhance PM2.5 concentrations. 

Based on PM2.5 spatial maps and GHMS-SMOD data, variations in PM2.5 across several settlement 
classes (urban, peri-urban, rural, and uninhabited) were studied. For Delhi-NCR and Kanpur 
regions, a marginal difference in annual PM2.5 was observed between rural and urban areas. For 
the Bengaluru region, no difference was observed between urban, peri-urban, and rural areas, 
irrespective of seasons. Even though most urban areas were identified as hotspots, no 
significant difference between urban and rural PM2.5 was observed.  

Hotspot identification is not only based on the magnitude of PM2.5 but also its clustering pattern. 
One of the potential reasons for the observed shallow gradients is the regional nature of PM2.5 
(widespread natural and anthropogenic sources). In India, a large portion of the rural 
population still depends on solid fuels for domestic use, which can contribute significantly to 
rural PM2.5 (Conibear et al., 2018; Balakrishnan et al., 2019). A recent mobile monitoring study 
in Bengaluru by CSTEP and ILK Labs (2020) observed shallow gradients in on-road PM2.5 across 
urban and peri-urban areas.  

8.1 Limitations 
The accuracy of the estimated PM2.5 depends on several factors:   

1. The ground truth data used for training the models were third-party data, which were 
being collected/monitored by pollution control board authorities. Rigorous quality-
check measures were applied while compiling the PM2.5 data for the model. However, 
any unidentified errors/biases in the data can impact the accuracy of the model 
estimates.  

2. India being a tropical country, the frequent presence of clouds can lead to missing data 
or AOD with higher uncertainty. Only the highest quality AOD (identified based on the 
quality flag) was used in this study.  

3. Missing model PM2.5 estimates during MON (due to missing satellite AOD) biased the 
annual mean values. This bias was higher in the Bengaluru region compared to other 
study regions.  

4. Models in the present study were trained using urban PM2.5; however, 
predictions/estimates were also made in the peri-urban and rural areas. Given the scale 
of the study, more peri-urban and rural validation exercises need to be conducted.  

5. The spatial density of the monitoring data can also influence the model performance. 
Compared to Delhi-NCR, other study regions had fewer PM2.5 monitoring stations. 

6. The model configured in the present study assumed that the temporal (day-to-day) 
variability in the AOD–PM2.5 relationship was spatially invariant. The frequent 
occurrence of elevated aerosol layers in the northern and western parts of India during 
SUM months can override this assumption.  
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9. Way Forward 
9.1 Future research recommendations 
The economic resources of LMICs do not support establishing a spatially dense network of 
reference-grade air pollution monitoring stations, as they are expensive. Satellite-AOD- based 
inexpensive PM2.5 estimates were already recommended for developing countries such as India 
by Brauer et al. (2019) as part of their proposed hybrid monitoring approach. Because of the 
complexities in satellite-AOD–based PM2.5 estimates and based on the experience gained from 
the current study, we propose the following research recommendations for the future: 

1. Given the heterogeneous pollution sources and varied meteorology and topography 
across the Indian subcontinent, local models are preferred to estimate PM2.5 from AOD. 

2. Because of the limited regulatory air pollution monitoring data available for training 
statistical or artificial intelligence models, calibrated PM2.5 data from low-cost sensor 
networks could be used as training data. 

3. For accurately locating hotspot areas, a much higher resolution (sub-kilometre) PM2.5 is 
desired. Downscaling methods could be explored to reduce the spatial resolution of the 
PM2.5 estimates further. 

4. Statistical methods such as land-use regression (LUR) could be explored in cities that 
have spatially dense monitoring data (or mobile monitoring data) to overcome the 
missing PM2.5 estimates from satellite models (because of the missing AOD). 

5. Suitable auxiliary predictors such as information on aerosol vertical distribution, 
proxies for elevated aerosols, and cloud optical depth could be explored for improving 
the accuracy of PM2.5 estimates. 

9.2 Policy recommendations 
Investigations carried out during the study have revealed several interesting spatial 
characteristics of PM2.5. Based on the results obtained, the following policy recommendations 
are made:  

1. Using high-resolution PM2.5 maps, policymakers and regulatory authorities could 
prioritise areas for devising/implementing air pollution mitigation strategies to achieve 
an effective reduction in the area-averaged PM2.5.  

2. Continuous ambient air quality monitoring stations could be established in 
representative rural and peri-urban locations. Data from these stations could aid 
researchers in fine-tuning their models for achieving more accurate spatial predictions 
of air pollution levels in non-urban regions.  

3. Source apportionment studies could be conducted in representative rural and peri-
urban locations to identify and quantify the pollution sources contributing to rural 
pollution.  

4. Though city-specific actions plans are already being implemented in the cities that were 
studied (Delhi, Kanpur, and Bengaluru), further actions are recommended to regulate 
polluting activities of unorganised sectors (brick kilns, quarries, etc.) operating in the 
periphery of these cities.  
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11. Appendix A: Supplemental Figures 

 
Figure A1: AOD spatial distribution before and after imputation for a typical winter day 

 

 

 
Figure A2: Typical raw and quality-checked daily mean PM2.5 time series 
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Figure A3: Bilinear interpolation 

 

 

 
Figure A4: The cubic-spline temporal interpolation of NDVI 
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Figure A5: Spatio-temporal variations in the daily mean NDVI 

 

 
Figure A6: Spatio-temporal variations in the daily mean PBLH 

 

 
Figure A7: Spatio-temporal variations in the daily mean surface pressure 
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Figure A8: Spatio-temporal variations in the daily mean relative humidity 

 

 
Figure A9: Spatio-temporal variations in the daily mean surface temperature 

 
Figure A10: Spatio-temporal variations in the wind speed 
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Figure A11: Density scatter plots depicting the model-predicted monthly mean PM2.5 and measured monthly mean 

PM2.5. Monthly mean values were derived by aggregating daily mean values to the calendar month. 

 

 

Figure A12: Density scatter plots depicting the model-predicted daily mean PM2.5 and measured daily mean PM2.5 (the 
Delhi-NCR and Kanpur model). Here, the LME model was configured with the site-specific random intercept, in 

addition to the day-specific random slope and intercept. 
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Figure A13: Density scatter plots depicting the model-predicted daily mean PM2.5 and measured daily mean PM2.5 (the 
Bengaluru model). Here, the LME model was configured with the site-specific random intercept, in addition to the 

day-specific random slope and intercept. 

 

 
Figure A14: The performance of the random forest model (10-fold CV) for Delhi-NCR and Kanpur 
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Figure A15: The comparison of the LME-predicted and measured PM2.5 for a rural location in UP 
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Table A1: Details of the CAAAQMS stations from which the PM2.5 data are used in this study along with PM2.5 and MODIS-AOD annual statistics. N indicates the number of daily mean 
data points available in the study year. SD represents the standard deviation. 

State City Continuous Ambient Air Quality Station (CAAQMS) Latitude 
( ̊ N) 

Longitude 
( ̊ E) 

PM2.5 (µg m-3) AOD 

N Mean ± SD N Mean ± SD 

Karnataka Bengaluru Peenya, Bengaluru - CPCB 13.0270 77.4941 304 37 ± 16.9 104 0.45 ± 0.19 

Karnataka Bengaluru BTM Layout, Bengaluru - CPCB 12.9135 77.5951 319 40 ± 23.1 48 0.41 ± 0.19 

Karnataka Bengaluru BWSSB Kadabesanahalli, Bengaluru - CPCB 12.9352 77.6814 279 42 ± 19.5 49 0.37 ± 0.18 

Karnataka Bengaluru Bapuji Nagar, Bengaluru - KSPCB 12.9519 77.5398 313 38 ± 13.9 50 0.47 ± 0.20 

Karnataka Bengaluru Hebbal, Bengaluru - KSPCB 13.0292 77.5859 312 32 ± 17.6 59 0.37 ± 0.15 

Karnataka Bengaluru Hombegowda Nagar, Bengaluru - KSPCB 12.9385 77.5901 292 28 ± 15.3 72 0.39 ± 0.17 

Karnataka Bengaluru Jayanagar 5th Block, Bengaluru - KSPCB 12.9210 77.5849 290 31 ± 17.7 75 0.39 ± 0.18 

Karnataka Bengaluru Silk Board, Bengaluru - KSPCB 12.9173 77.6228 293 32 ± 13.8 59 0.34 ± 0.16 

Karnataka Chikkaballapur Chikkaballapur Rural, Chikkaballapur - KSPCB 13.4288 77.7314 252 30 ± 15.0 88 0.42 ± 0.18 

Karnataka Hubballi Deshpande Nagar, Hubballi - KSPCB 15.3518 75.1407 184 35 ± 18.9 106 0.38 ± 0.13 

Karnataka Kalaburagi Lal Bahadur Shastri Nagar, Kalaburagi - KSPCB 17.3220 76.8226 282 37 ± 24.0 64 0.43 ± 0.12 

Karnataka Mysuru Hebbal 1st Stage, Mysuru - KSPCB 12.2104 76.3738 115 24 ± 09.2 93 0.36 ± 0.13 

Karnataka Ramanagara Vijay Nagar, Ramanagara - KSPCB 12.7334 77.2981 86 24 ± 10.9 94 0.41 ± 0.15 

Karnataka Yadgir Collector Office, Yadgir - KSPCB 16.7602 77.1428 93 38 ± 18.7 95 0.46 ± 0.16 

Delhi Delhi Alipur, Delhi - DPCC 28.8153 77.1530 318 108 ± 79.3 165 0.66 ± 0.50 

Delhi Delhi Anand Vihar, Delhi - DPCC 28.6468 77.3160 335 125 ± 97.6 172 0.69 ± 0.52 

Delhi Delhi Ashok Vihar, Delhi - DPCC 28.6954 77.1817 351 117 ± 95.7 144 0.67 ± 0.53 
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Delhi Delhi Aya Nagar, Delhi - IMD 28.4707 77.1099 323 80 ± 62.4 165 0.71 ± 0.58 

Delhi Delhi Bawana, Delhi - DPCC 28.7762 77.0511 342 130 ± 91.8 167 0.62 ± 0.47 

Delhi Delhi Burari Crossing, Delhi - IMD 28.7257 77.2012 266 106 ± 72.7 138 0.68 ± 0.56 

Delhi Delhi CRRI Mathura Road, Delhi - IMD 28.5512 77.2736 347 100 ± 79.5 159 0.65 ± 0.52 

Delhi Delhi DTU, Delhi - CPCB 28.7500 77.1113 340 116 ± 83.8 152 0.62 ± 0.45 

Delhi Delhi Dr Karni Singh Shooting Range, Delhi - DPCC 28.4986 77.2648 343 96 ± 80.5 153 0.71 ± 0.55 

Delhi Delhi Dwarka Sector 8, Delhi - DPCC  28.5710 77.0719 355 106 ± 80.1 159 0.70 ± 0.66 

Delhi Delhi IGI Airport (T3), Delhi - IMD 28.5628 77.1180 312 91 ± 72.6 163 0.64 ± 0.54 

Delhi Delhi IHBAS, Dilshad Garden, Delhi - CPCB 28.6812 77.3025 343 114 ± 71.1 182 0.70 ± 0.54 

Delhi Delhi ITO, Delhi - CPCB 28.6286 77.2411 339 108 ± 77.8 166 0.71 ± 0.56 

Delhi Delhi Jahangirpuri, Delhi - DPCC 28.7328 77.1706 347 126 ± 91.3 145 0.66 ± 0.53 

Delhi Delhi Jawaharlal Nehru Stadium, Delhi - DPCC 28.5803 77.2338 342 102 ± 88.6 177 0.69 ± 0.53 

Delhi Delhi Lodhi Road, Delhi - IMD 28.5918 77.2273 325 83 ± 63.3 175 0.68 ± 0.53 

Delhi Delhi Major Dhyan Chand National Stadium, Delhi - DPCC 28.6113 77.2377 350 91 ± 69.3 168 0.72 ± 0.54 

Delhi Delhi Mandir Marg, Delhi - DPCC 28.6364 77.2011 343 102 ± 74.2 160 0.72 ± 0.58 

Delhi Delhi Mundka, Delhi - DPCC 28.6847 77.0766 343 124 ± 96.6 152 0.64 ± 0.51 

Delhi Delhi NSIT Dwarka, Delhi - CPCB 28.6091 77.0325 354 110 ± 61.2 155 0.66 ± 0.55 

Delhi Delhi Najafgarh, Delhi - DPCC 28.5702 76.9338 324 93 ± 66.2 171 0.66 ± 0.54 

Delhi Delhi Narela, Delhi - DPCC 28.8228 77.1020 348 105 ± 75.2 168 0.66 ± 0.51 

Delhi Delhi Nehru Nagar, Delhi - DPCC 28.5679 77.2505 356 119 ± 104.7 151 0.65 ± 0.49 

Delhi Delhi North Campus, DU, Delhi - IMD 28.6574 77.1585 288 106 ± 82.6 156 0.64 ± 0.50 
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Delhi Delhi Okhla Phase-2, Delhi - DPCC 28.5308 77.2713 341 106 ± 90.4 141 0.67 ± 0.55 

Delhi Delhi Patparganj, Delhi - DPCC 28.6237 77.2872 349 95 ± 76.7 164 0.67 ± 0.48 

Delhi Delhi Punjabi Bagh, Delhi - DPCC 28.6740 77.1310 340 104 ± 83.5 149 0.65 ± 0.56 

Delhi Delhi Pusa DPCC 28.6396 77.1463 347 98 ± 81.6 154 0.75 ± 0.57 

Delhi Delhi Pusa, Delhi - IMD 28.6396 77.1463 350 79 ± 61.2 154 0.75 ± 0.57 

Delhi Delhi R K Puram, Delhi - DPCC 28.5633 77.1869 239 109 ± 85.0 157 0.72 ± 0.59 

Delhi Delhi Rohini, Delhi - DPCC 28.7325 77.1199 347 128 ± 97.6 140 0.66 ± 0.54 

Delhi Delhi Shadipur, Delhi - CPCB 28.6515 77.1473 344 116 ± 68.7 153 0.64 ± 0.50 

Delhi Delhi Sirifort, Delhi - CPCB 28.5504 77.2159 342 107 ± 82.5 154 0.69 ± 0.56 

Delhi Delhi Sonia Vihar, Delhi - DPCC 28.7105 77.2495 337 104 ± 77.2 161 0.65 ± 0.48 

Delhi Delhi Sri Aurobindo Marg, Delhi - DPCC 28.5313 77.1902 353 88 ± 71.0 157 0.60 ± 0.59 

Delhi Delhi Vivek Vihar, Delhi - DPCC 28.6723 77.3153 341 111 ± 90.6 177 0.72 ± 0.57 

Delhi Delhi Wazirpur, Delhi - DPCC 28.6998 77.1655 349 133 ± 101.1 146 0.66 ± 0.53 

Delhi Delhi US Diplomatic Post: New Delhi 28.6358 77.2245 298 103 ± 82.4 172 0.71 ± 0.57 

UP Agra Sanjay Palace, Agra - UPPCB 27.1987 78.0060 336 71 ± 42.7 156 0.60 ± 0.49 

UP Baghpat New Collectorate, Baghpat - UPPCB 28.9748 77.2134 346 98 ± 67.5 161 0.59 ± 0.39 

UP Bulandshahr Yamunapuram, Bulandshahr - UPPCB 28.4070 77.8498 274 92 ± 63.9 167 0.62 ± 0.50 

UP Ghaziabad Vasundhara, Ghaziabad - UPPCB 28.6603 77.3573 333 119 ± 98.4 175 0.68 ± 0.49 

UP Ghaziabad Indirapuram, Ghaziabad - UPPCB 28.6462 77.3581 269 109 ± 90.4 174 0.68 ± 0.50 

UP Ghaziabad Loni, Ghaziabad - UPPCB 28.7573 77.2788 254 118 ± 98.2 164 0.63 ± 0.49 

UP Ghaziabad Sanjay Nagar, Ghaziabad - UPPCB 28.6854 77.4538 273 113 ± 86.8 170 0.66 ± 0.50 
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UP Greater Noida Knowledge Park - III, Greater Noida - UPPCB 28.4727 77.4820 336 102 ± 82.1 161 0.70 ± 0.58 

UP Greater Noida Knowledge Park - V, Greater Noida - UPPCB 28.5571 77.4537 182 109 ± 102.9 169 0.67 ± 0.52 

UP Hapur Anand Vihar, Hapur - UPPCB 28.7256 77.7497 240 92 ± 66.8 175 0.63 ± 0.46 

UP Kanpur Nehru Nagar, Kanpur - UPPCB 26.4703 80.3230 333 93 ± 78.3 142 0.61 ± 0.59 

UP Lucknow Lalbagh, Lucknow - CPCB 26.8459 80.9366 348 92 ± 61.7 164 0.56 ± 0.40 

UP Lucknow Talkatora District Industries Center, Lucknow - CPCB 26.8340 80.8917 349 119 ± 67.5 167 0.60 ± 0.43 

UP Lucknow Central School, Lucknow - CPCB 26.8821 80.9303 338 78 ± 52.5 160 0.56 ± 0.41 

UP Lucknow Nishant Ganj, Lucknow - UPPCB 26.8714 80.9571 164 97 ± 65.2 163 0.56 ± 0.40 

UP Lucknow Gomti Nagar, Lucknow - UPPCB 26.8681 81.0051 103 94 ± 58.5 164 0.56 ± 0.39 

UP Meerut Jai Bhim Nagar, Meerut - UPPCB 28.9536 77.7623 101 121 ± 71.3 165 0.58 ± 0.37 

UP Meerut Pallavpuram Phase 2, Meerut - UPPCB 29.0635 77.7097 68 158 ± 65.8 171 0.56 ± 0.42 

UP Meerut Ganga Nagar, Meerut - UPPCB 28.9993 77.7590 80 139 ± 63.6 175 0.56 ± 0.36 

UP Moradabad Lajpat Nagar, Moradabad - UPPCB 28.8253 78.7213 239 108 ± 68.7 165 0.53 ± 0.36 

UP Muzaffarnagar New Mandi, Muzaffarnagar - UPPCB 29.4724 77.7194 255 88 ± 55.5 170 0.51 ± 0.33 

UP Noida Sector - 62, Noida - IMD 28.6245 77.3577 353 102 ± 82.5 162 0.67 ± 0.50 

UP Noida Sector - 125, Noida - UPPCB 28.5448 77.3231 324 115 ± 87.5 125 0.73 ± 0.59 

UP Noida Sector-1, Noida - UPPCB 28.5898 77.3101 176 111 ± 114.7 149 0.69 ± 0.59 

UP Noida Sector-116, Noida - UPPCB 28.5692 77.3938 154 123 ± 111.8 167 0.66 ± 0.48 

UP Varanasi Ardhali Bazar, Varanasi - UPPCB 25.3506 82.9083 303 97 ± 50.7 173 0.58 ± 0.35 

Haryana Rohtak MD University, Rohtak - HSPCB 28.5212 76.3714 350 77 ± 49.7 105 0.51 ± 0.33 

Haryana Faridabad Sector- 16A, Faridabad - HSPCB 28.4088 77.3099 302 97 ± 80.2 95 0.59 ± 0.44 
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Haryana Manesar Sector-2 IMT, Manesar - HSPCB 28.3607 76.9361 342 84 ± 45.2 76 0.51 ± 0.44 

Haryana Panipat Sector-18, Panipat - HSPCB 29.4980 76.9933 316 71 ± 57.4 109 0.54 ± 0.35 

Haryana Palwal Shyam Nagar, Palwal - HSPCB 28.1486 77.3321 335 90 ± 53.7 104 0.56 ± 0.45 

Haryana Gurugram Vikas Sadan, Gurugram - HSPCB 28.4501 77.0263 323 89 ± 57.9 100 0.58 ± 0.55 

Haryana Bahadurgarh Arya Nagar, Bahadurgarh - HSPCB 28.6701 76.9254 343 70 ± 48.1 102 0.66 ± 0.65 

Haryana Dharuhera Municipal Corporation Office, Dharuhera - HSPCB 28.2068 76.7997 319 75 ± 42.0 83 0.47 ± 0.33 

Haryana Ballabgarh Nathu Colony, Ballabgarh - HSPCB 28.3419 77.3197 318 85 ± 53.1 78 0.53 ± 0.43 

Rajasthan Bhiwadi  RIICO Ind. Area III, Bhiwadi - RSPCB  28.1949 76.8623 336 103 ± 45.4 101 0.47 ± 0.35 

Haryana Sonipat Murthal, Sonipat - HSPCB 29.0272 77.0621 301 65 ± 36.3 123 0.54 ± 0.35 
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12. Appendix B: Satellite AOD–Derived PM2.5 
Maps of Indore City 

Indore is the most populous and the largest city in the state of Madhya Pradesh. The city is 
distributed over a land area of 530 km2 and has a population of around 1.9 million (2011 
census). Indore is surrounded by many major industrial areas, namely Pithampur, the Sanwer 
industrial belt, and Laxmibainagar Industrial Area. Currently, Indore has only one installed 
CAAQMS.  

The study period was from December 2018 to May 2020. The daily mean PM2.5 data from all the 
CAAQMSs installed across Madhya Pradesh were used to train the LME model (Equation 4). The 
list of CAAQMSs along with their geographical coordinates, the yearly mean (for the year 2019) 
PM2.5, and AOD over those station locations are given in Table B1.  

Table B1: CAAQMSs from which PM2.5 data is used for building the Indore model. SD and N represent the standard 
deviation and the number of daily mean data points. 

City CAAQMS  Latitude 
(̊ N) 

Longitude 
( ̊ E) 

PM2.5 (µg m-3) AOD 

N Mean 
(SD) N Mean (SD) 

Bhopal TT Nagar 23.2336 77.4006 103 67 (32.7) 139 0.35 (0.14) 

Dewas Bhopal Chauraha 22.9683 76.0641 340 42 (20.4) 145 0.40 (0.17) 

Indore Chhoti Gwaltoli 22.7196 75.8577 102 58 (26.0) 154 0.41 (0.18) 

Jabalpur Marhatal 23.1686 79.9322 101 75 (37.0) 166 0.41 (0.18) 

Katni Gole Bazar 23.8343 80.3894 98 95 (42.9) 154 0.42 (0.21) 

Mandideep Industrial Area 23.1084 77.5114 345 41 (22.6) 156 0.42 (0.21) 

Pithampur Industrial Area 22.6248 75.6752 354 40 (21.6) 154 0.41 (0.17) 

Ratlam Shastri Nagar 23.3317 75.0460 270 47 (18.7) 134 0.37 (0.16) 

Singrauli Vindhyachal STPS 24.1090 82.6456 236 87 (45.6) 133 0.45 (0.25) 

Ujjain Mahakaleswar 
Temple 23.1827 75.7682 338 43 (24.8) 133 0.43 (0.21) 

Domoh Shrivastav Colony 23.8175 79.4462 310 42 (26.3) 137 0.41 (0.23) 

Gwalior City Centre 26.2034 78.1933 No data in 2019 151 0.52 (0.40) 

Gwalior  Phool Bagh, Gwalior - 
Mondelez Ind. Food  26.2105 78.1710 No data in 2019 159 0.52 (0.41) 

Sagar Deen Dayal Nagar 23.8640 78.8029 No data in 2019 146 0.36 (0.17) 

 

Figure B1 shows the model performance in terms of 10-fold CV and LOOCV. Model R2 (0.73) and 
NRMSE (0.29) values were slightly higher than the other two models in the study.  
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Figure B1: Density scatter plots depicting the model-predicted daily mean PM2.5 and measured daily mean PM2.5 (the 

Indore model). 

Figure B2 shows the annual mean PM2.5 maps for the calendar year 2019 over Indore and 
surrounding regions. The annual mean PM2.5 concentrations varied between 42 and 58 µg m-3 

with maximum concentrations (~58 µg m-3) observed over northern parts of Indore. The 
spatially averaged annual mean PM2.5 values were ~51 µg m-3. The frequency distribution of the 
gridded spatial PM2.5 values is also shown in Figure B2. Indore and surrounding regions include 
a total of 799 one km grids. Similar to other study regions, Indore’s annual mean PM2.5 over all 
the spatial grids exceeded the Indian national annual standard (40 µg m-3). 

 
Figure B2: The spatial map of the annual mean PM2.5 over Indore for the year 2019 and surrounding regions and their 

frequency distribution 

Figure B3 depicts the seasonal mean maps of PM2.5. Similar to Delhi-NCR, Kanpur, and 
Bengaluru, Indore’s seasonal maps also exhibited significant spatial and temporal variations in 
PM2.5. Seasonally, PMN was the most polluted, followed by WIN and SUM. MON was 
characterised by the lowest PM2.5 levels. In SUM 2020, predicted PM2.5 levels were much lower 
compared to SUM 2019 over all the grids. This was because of the nationwide COVID-19 
lockdowns.  
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Figure B3: The seasonal mean maps of PM2.5 over Indore. The solid black line represents the Indore municipal area 

 

Table B2: The seasonal mean PM2.5 statistics for Indore. SD represents the standard deviation. 

Indore 
Mean (SD) 

(µg m-3) 

WIN 2019 59 (3.1) 

SUM 2019 39 (2.4) 

MON 2019 27 (2.7) 

PMN 2019 66 (3.4) 

WIN 2020 49 (3.2) 

SUM 2020 26 (2.7) 
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